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What Is the Smart City?

The spreading out of computers into public places &
the built environment and all their consequences

The Real Built &
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What Is Big Data ¢

« Data is big with respect to its volume. | know there
are other definifions — velocity, variety etfc. but to
me, data is big if it requires large use of computer
memory implying volume. MB, TB, PB .....

e The conventional definition in business is the Five V's
— volume, velocity, variety, veracity, value

« Too big to fit in an Excel Spreadsheet

* |n cities, data usually implies numbers of locations
and their attributes but locations imply interactions.

« Thus data are relations between locations and In
essence if we have n locations, we have n?
interactions. Thus small dafa can become big
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Planning the Smart City

* The key issue is time scales — most of our planning is
long term and this shifts the balance to short term

« The smart city is the high frequency city and most of
our planning is for the very short term, for
disruptions, emergencies, for local improvements
without major infrastructural changes

« The short ferm can turn into the long term if sensed
data is continuously collected

« We need to develop better models — analytics for
the short term. Only then can we see how the short
and long terms can be infegrated

« This talk is thus about planning to counter disruptions
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A Short History of Big Data

e But there is controversy about how big.

e Big is not necessarily beautiful —small is beautiful —
this was the watch word of the 1970s

e SO we need to be careful

We can still develop good ideas
and good theory with small data.
In fact the idea that the fruth or
even the path to progress lies in
big data is problematic; there are ECONOMICS

i : . AS IF PEOPLE MATTERED
limits to machine learning i
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“An onginal and iInguisitive mind.* «—Time

WALL STREET"
JOURNAL ™| % dlork
bestseller

Times

bestseller

THE TINY CLUES
THAT UNCOVER HUGE TRENDS

A Revolution That Will
Transform How We Live,
Work and Think

MARTIN LINDSTROM Viktor Mayer-Schonberger
Now York Times bestaolling author of Beyclogy and Kenneth cukier

Foreword by Chip Heath, coauthor of

Made 1o Stick and Switch
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Thus when we have data that contained relafions,
as we do in spatial analysis, the data can begin o
blow up, It explodes

This is frue of flow and network data and arguably
this is the most important data that we can get
because all locations are really the product of flows
That is the point | keep making in my various papers;
data are relations between locations and in
essence if we have n locations, we have n?
interactions.

Thus small data can become big as | implied a
moment ago
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Examples: Dublin 1837, Ireland 1888, London

1953 Posts About Complexity Fractals Networks Simulations Media Books Articles Editorials

+— Visualising Fast Flows Movies Are Now Online

The Oldest Flow Map
Posted on June 27, 2011 by Michael Batty

W Tweet 3

\ o2 .... according to the great cartographer Arthur Robinson, the two
: A ! . | maps of traffic between Dublin and the rest of Ireland by Lt.
,—’J‘\"\' “|  Harness of the British Army in 1837, are the oldest. Mapped for
7 AN, | the Irish Railway Commissioners prior to construction of the

railway. Are these actually the first?

Be Sociable, Share!

W Tweet 3

o 84 o MEEY © suwm

About Michael Batty

I chair CASA at UCL which I set up in 1995. I am Bartlett Professor In UCL.
View all posts by Michael Batty —
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Examples: Dublin 1837, Ireland 1888, London
1955

Harness, 1837 Ravenstein 1888
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So big data can derive from small if we think of it as
relations.

But also big data is relative to our ability to process
It —the machines or ‘brains; we have to crunch if

If | have a big box of punched cards, say several
hundred then | can reduce the physical size by
putting on another media — punched tape for
example, or magnetic tape

But the size of the machine to process it is a limit —
the computer may only be able to process so much
In core memory and the problem may be too big
for the machine. There is a great example ....
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blog.bigdatatooikit.org

»* BigDataToolkit

John Graham-Cumming keynote Strata Conference Lond...

. Strata .=
CONFERENCE gy The Great
LR Railway Caper:
Big Data in 1955

John Graham-Cumming,
CloudFlare

£ 1-20CTOBER 2012
(& LONDON, ENGLAND

Big Data PrOblems John Graham-Cumming keynote Strata Conference Lond... @ <
have been around
longer than you think

The Strata Conference is in town and one
presentation that caught my eye was titled
The Great Railway Caper: Big Data in

big data, data processing,

problems, shortest path

@ £ e !l

https://www.youtube.com/watch?v=pcBJfKESUwU
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Locations and Interactions: Flow Systems in
Cities

Elsewhere | have argued that we should treat cities as
flow systems — as networks. This has been a focus for @
long time in fransport and land use and we have
always been up against the problem of big data.

So let me begin my lllustration of this dilemma and
how we are thinking about it with some problems that
have very small data. Problems of spatial inferaction
where our numbers of locations is small < 100, ~ 50
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Understanding and Visualising Flows

An early model circa 1967-8 Central and NE Lancs

M. Batty (1976)
Urban Modelling
Cambridge UP

7 Work and service flows
20 000 trips
.10 000

both directions. Only

¥ ‘ ‘
A trips > 300 shown

Distribution of service demands

Distribution of work trips

n2=332=1089, not so big but hard to visualise
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N2=6332=400,689, bigger but impossible to visualise
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Even our stafistics breaks
down when we get large
numbers like over several
thousand as you can see on
the left and above right for
400K data points where the
pattern is highly convoluted.
This is from a gravity model.
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Now what happens when we readlly do scale up to the
level of MSOAs of which there are 7201 in the UK — do
we partition and argue we don't need to scale up 1o
n?=72012=51,854,401.

Circa 52 million points is an issue but our models run in
a maftter of seconds but that is a loft of data to store —
ok it is sparse but sparsity isn’t structured so we can’t
easily partition and in any case we want to compute
any possible flows between centfral London say and
Newcastle. Here is the problems scaled up and this is
what we are grappling with at present.
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(a) MSOA (A=7201) (b) LSOA (A=34753) (¢) OA (A=181408)

Figure 8.2: ONS Geographies for MSOA, LSOA and OA levels.
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Here is a block diagram of how we are currently

organising things
Server

Client-1

e Big matrices 52 million cells

_ oA each and several in core
Client-2 | e Lots of users — all generating

data like John Graham-
Cummings said about his

Client-3

firm Cloudfare

e Maps served as tiles and

_ ) refreshed
Client-n e Maps stored on server side
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JUANT....

Simulating the Impacts of Large Scale Change in the UK

Explore QUANT

Aboet QUANT

http://quant.casa.ucl.ac.uk/
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Real-Time Streaming: Dash Boards & Portals

London f‘.h)ﬂ 30 Jun @ 20472?
A RER Go to Map - Go to Grid - Change City

VWac e
Sores Garty

2.9 % 8 %

New =\ ' L@ et [ ey

9321 381

www.citydashboard.org

SR BT B NCRM JISC
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London Panopticon

®6April2016 @ London

hitp://vis.oobrien.com/panopticon/

G O%des (@eohe)  Morw Mo

ASO1 East of Melton S5t Bt Grays Inn Rd / Acton St
|¢°6A9113$6 N o s T n W ed 06 Apr 14:00 A
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DublinDashboard

City intelligence
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We are building a 3D version of London which captures real
time data in real fime and displays it almost immediately — this
kind of application is moving very fast at present and there

are countless variants on the web
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e Letme show this movie instead as it has some good real time
content—no | can’t show this one as | have to load Quick

Time and we don't have time
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Intelligent Transit: Mobility from Big Dato

e |tisin the area of fransit — fixed fransport systems like
that greatest progress is being made — largely
because we have data from smart cards.

e These are for passenger demand for fravel by time
and place, and we also have supply of
vehicles/trains (and buses) which relate to demand

e Thisis generafing big data — without much attribute
data of course but excellent portraits of what
happens in time and space

e |nLondon we have a very complex system which is
accessed by Oyster Card.
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Real-Time Streaming: The Oyster Card Data Set

)

Tap at start and end of train journeys
Tap at start only on buses

Accepted at 695 Underground and
rail stations, and on thousands of
buses

Many Data Variants
991 million Oyster Card
taps over Summer 2012
— this is big data by any
standards — it won't fit in |
an Excel spreadsheet
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The Complexity of London’s Rail Network
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Let me show you a little movie to get a sense of how our tubes are different from yours

UCL ENGINEERING

! 1ge he worid

e - Pvagents - CLImN ShIRE R Jaar

OYSTER GIVES UP PEARLS

How studying mulbkons of Oyster Card journeys revecls
London's “polycentres’

T
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| have shown this many times before but it gives
a sense of how we piece the data together

N MyStes Smdsom W3+ New

Pulse of the City (reboot)

Jon Reades’ movie aft https://vimeo.com/41/760845
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Variabillities — Heterogeneity and Travel Profiles

First we will look at some of the data and how it varies
INn tferms of the diurnal flows usually morning and
evening peaks, with a small blip (peak) around 10pm
at night
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Entry and Exit Volumes
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And for Parficular Events: Weekdays, Saturdays
Sundays

Number of Events

Number of Events

400

300
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100

-100

-200

-300

-400(

Entry at Camden Town (10 Mn. Intervals)

Weekday
Saturday
Sunday

Number of Events
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Time of Day
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Time of Day

800
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Weekday
Saturday
Sunday

Events

-100
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Weekday
Saturday
Sunday

Tourism?

-150

2am 4am 6am 8am 10am 12pm 2pm 4pm 6pm 8pm 10pm 12am 2am 4am
Time of Day
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Comparing Variability for different time intervals for
Three World Cities: London, Beijing and Singapore

Table 1. Summary statistics of one-week of smart-card data (metro trips only)

London Singapore Beijing

Monday 3,457,234 2,208,173 4,577,500
Tuesday 3,621,983 2,250,597 4.421,737
Wednesday 3,677,807 2,277,850 4,564,335
Thursday 3,667,126 2,276,408 4,582,144
Friday 3.762.336 2,409,600 4,880,267
Number of stations (1) 400 130 233
Number of tube line 13 4 17
Area(2) 1.572 km® TI®3 km? 2267 km?

Total population (3) 8.63 million 5.3 million 21.15 million

Ridership of Metro 20% 35" 21%
Length of metro lines  402km 182km 465 km
(MRT+LRT)

(1) Number of stations is the number of stations with smart-card records gencrated.
(2) The area of Beijing only counts the arca enclosed by the 6th nng road for a fair companson.

(3) From the World Population Review, http://'worldpopulationreview.com/world-cities’ accessed 17 January 2016

Zhong, C., Batty, M., Manley, E., Wan, J., Wang, Z., Che, F., and Schmitt, G. (2016) Variability in Regularity:
Mining Temporal Mobility Patternsin London, Singapore and Beijing using Smart-Card Data., PLOS One,
http://dx.doi.org/10.1371/journal.pone.0149222
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From 1 minute intervals to the whole day

Variability measure of temporal patterns (tap in time)

2 factor(city)
& &5 Beljing

_g M London

t; B Singapore

g

measures with increasing time intervals (minutes)
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Comparing variability for different time Intervals over
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Figure 1. Variability of regularity in the trip matrix over time
o~ ‘ < A

Note: Each box plot shows the vanabality of 400 stations over time measured at different 1empoeal scales
Ovenall, caght subplots give a similar trend where lower vanabality appears duting peak hosss (around % ams m
the moming and 6pen in the evening). More details can be captured as differences of vanability between cach

time wait are magnified as we decrease the temporal scale from | 2h to 4 minutes
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Comparing variability for different time intervals and
spatially by stations for Three World Cities: London,
Beijing and Singapore
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Disruptions — Routine Analysis of Daily Events

e Behaviours vary across network

 Different areas of network more resilient to
disruption, due to available infrastfructure and
individual ability to change

e But areas of network are naturally closely fied
through established usage patterns

e Individual-based analyses provide insight into
behaviours underlying macroscopic flows

We will look at several kinds of disruption
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First hypothetical disruptions simply by examining
breaks in the network

Then an example of the Circle and District Lines
which had a 4 hour stoppage on July 19th 2012

And a Bus Strike in East London and how this shows
up In the data

And typical patftern of delay on all modes
visualised for Greater London
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Rail Network
Geographic form
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No Change: Increased Travel Time

Greater than 2SD above mean increase on usual travel
time forthat Oyster Card

Size equal to proportion of users that regularly travel from station
during time period, and travelled that during disruption




The Public Transport System in Terms of Vehicle Flows

Tube Outputs
Status: Disrupted line
segments
Stations: Higher than mean
wait

Calibration

Bus ” | Buses: Estimated positions

Bus Stops: Higher than mean
wait

Calibration

Heavy Rail

Trains: Late running services
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Delays from Tube, National Rail and Bus Fused

Key

National Rail
more than 5
minutes late

Tube stations
showing a wait
time 15% above
expected

Bus stops
showing a wait
time 20% above
expected

Tube delays from
the TfL status feed
are also plotted as
lines
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Locational Dynamics of Demand

We are currently using information theory to figure out how much
information from frips is transmitted from station to stafion
through time by working out how many passengers are in
stations or on trains in stafions over fime. We are using the
concept of fransfer entropy to do this. | don’t have time to say
much about this but here is a picture about this for one line

........

P Ves1lye xe)
P YVes1lye)

Tyx = Z P(YVe+1, Ve Xe) log
t=1
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Second we are working with the Oyster data again with
Melanie Bosredon in out group and Marc Barthelemy
INn Paris on extracting clusters from the travel data
using a new method of defining intensity. | will show
this as a simple movie of origin and destination
intensities as they change over fime of day.

Number of hotspots (stations)
vs. time
Monday ] Tuesday ‘."Jedno:-fv:a,'l Thursday ] Friday Saturday Sunday
ype
I ¢| 1 | l l'
= ‘ LG f *4 & N ' "rl .l | '\ . ‘ ""*'-" \‘ A
S et I L U B L™
1 |
\ | ¥ Iy
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Can Social Media Contribute to Smart
City Planninge

| am going to look briefly at data on bikes — this is hardly
social media but it is instructive.

And then | will look at some ideas from Twitter and
building up data bases.

Key Issue is how good are these data sets?
And how good is big data in absolute ferms?e

By social media we mean data generated from smart
phones, crowd-sourcing and even bikes data which
Is all online from the fime one takes out the bike until
It is dropped off. | will start with bikes.
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Related Real -Time Data: Social Media

A lot of data is now coming online for fravel and one of our group
Oliver O'Brien has some 97 bike schemes world wide for which he has

online data in real time - Bikes Data — 4200 bikes, started Nov 2010, all
the data— everything — all trips, all times, all stations/docks

7 Lunden Sac by Mag  Windown Inlersat {splocer

New Tools for Understanding & Planning the Smart City



% mwmcmemmoocumm
. Tosudey Tt 115
a

At 2010-10-04 08:20:00 there were 862 bikes in use,

Animations of Public Bike Movements Animations of Changes in the Bike Nodes: Docking
More Analysis Bike-o-Meter
casa.ucl.ac.uk/bom
« London » Tweet-o-Meter for bikes
- Steven Gray (@frogo)

« Graph shows
number of bikes
available to hire

- Using Google Gauges

« See the real life Tweet-
o-Meters at the new

* Effect of rain BV, British Library “Growing
— Using the CASA | Knowledge™ exhibition
weather station " Y HBYRAYL — Should be easy to hack
« Effect of the to show the Bike-o-

. Meters instead @
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The Website: Real Time Visualisation of Origins and
Desfinations ACJ”V'TV http://bikes.oobrien.com/london/

Bike Share Map: London
A
14:42
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Ethnic Diversity from Twitter Feeds: The Challenge of

Adding/Integrating New Data and Value to Real
Time Data

ann ter Tongues
- 2 4 Moo mispingleadon £o.uk

[0 T Apele Yahoo! CoogleMape YauTute Whipedia Newt ™ Intav (1) - _com - Goall  Cosgle Calentsr  Popular

Twitter Tongues

A multilingual social city - the languages
LSO of tweets in London in summer 2012
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Aralyzn: L2 Namwy, UCL Space Timelad (Deitrn)
Canograghy: Jamas Cheshire, UCL CASA |04 pataanalysis

Ieteractive: Otver O'Brien, UCL CASA {Bockn)
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What Can We Learn: The Limits to Big
Data

We need to add geo-demographics to this data — how
— we barely have any possibility of doing this
because of confidentiality

We only have a difference between young and old in
terms of the card data

Chen Zhong my post doc, now a lecturer at Kings
(KCL) has done a lot of work on this relating o
extracting such data from related data sets

lmerna!ionql Journal of Gcagrap{:iml Information Science, 2014 Taylor & Francis
hitp://dx.doi.org/10.1080/13658816.2014.914521 Teyhor

& Frarcis Croup

Detecting the dynamics of urban structure through spatial network
analysis

Chen Zhong*, Stefan Miiller Arisona™”, Xianfeng Huang®, Michael Batty”
and Gerhard Schmitt”
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Finding Pearls in London’s Oysters

JONATHAN READES, CHEN ZHONG, ED MANLEY,
RICHARD MILTON and MICHAEL BATTY

Public transport is perhaps the most significant component of the contemporary
smart city cwrrently being automated using sensor technologies that generate data
about human behaviowr. This is largely due to the fact that the travel associated
with such transport is highly ordered. Travellers move collectively in closed vehicles
between fixed stops and their entry tnto and from the system is wnwnbiguous and
easy to automate usmg smart cards. Flows can thus be easily calculated at specific
station locations and bus stops and within fine temporal intervals. Here we outline
work we have been doiig using a remarkable big data set for public transport in
Greater London generated from the Oyster Card. the smart card which has been i
use for over 13 years. We explore the generic properties of the Tube and Overground
rail system focusing first on the scale and distribution of the flow volwmes af stations,
then engaging tn an analysis of temporal flows that can be decomposed into various
patterns using principal components analysis (PCA) which smoothes out normal
fluctuations and leaves a residual t which significant deviations can be tracked and
explained. We then explore the heterogeneity t the data set with respect to how
travel behaviour varies over different tone intervals and suggest how we can use
these 1deas to detect and manage disruptions tn the system.

Big Data, Automation and Smart Transit

Automation in transit systems is the most
visible sign of how the city is being trans-
formed to enhance the travel experience and
efficiency of movement (Batty et al., 2012).
There are many ways of achieving this but
one of the most significant is the use of smart
cards for ‘fully automatic fare collection’.
These smart cards usually contain the value
that the consumer has agreed to load onto the
card; they meet stringent requirements for
anonymity and security; and their use is such
that by tapping in and out of an automated
system, correct payments are ensured. Smart
cards like this, in fact, go back to the late
1960s and rapid progress in their develop-
ment was achieved in the 19705 and 1980s
when they first made their appearance as
phone cards in France. Different varieties of
credit card were then emerging too, and by

BUILT ENVIRONMENT VOL 42 NO 3

1984 in places like Hong Kong, stored value
cards for use on their new Mass Transit
Railway (MTR) had been introduced. By the
mid-1990s, contactless cards came onto the
scene, first in Seoul with the UPass card, and
then in Hong Kong where they introduced
the Octopus card, which was then extended
to other purchases in the local retail system.

Several other cities followed, but one of the
most comprehensive rollouts was in London
where, in 2003, the first cards were introduced
on the underground ('Tube’) system. These
are called ‘Oyster’ cards — partly in tribute, it
would seem, to Hong Kong's Octopus card
— but the official reason is that the Oyster
Card protects its ‘pearl’ — the stored values —
in a ‘hard shell’; hence, the name which we
have used in the title to this paper. Our par-
ticular interest in these ‘pearls’ is not in
their value but in the raw data that can be
extracted which covers ‘where’ the owner of
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Let me point you to some more material: there is @
special issue of Built Environment from last year

Big Data and the City

Editor: Michael Bahy
Centre for Advanced Spatial Analysis, University College London

Built Environment

Built Environment

Volume 42, number 3, September 2016 : : s
Big data is everywhere, largely generated by automated

systems operating in real time that potentially tell us how Big Data and the City

cities are performing and changing. A product of the smart T T

city, it is providing us with novel data sets that suggest
ways in which we might plan better,anddesigiunore
sustainable environments. The articles in this issue tell us
how scientists and planners are using big data to better
understand everything from new forms of mobility in
transport systems to new uses of social media. Together,
they reveal how visualization is fast becoming an integral

part of dev elnpiuy a thoroug sh underst anding of our aties. "9

-l

h’r’rp //www.spatialcomplexity. |nfo/orch|ves/3026
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