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Abstract	
	
In	 this	paper,	we	argue	 that	 the	development	of	data	with	 respect	 to	 its	use	 in	
understanding	and	planning	cities	is	intimately	bound	up	with	the	development	
of	 methods	 for	 manipulating	 such	 data,	 in	 particular	 digital	 computation.	 We	
argue	 that	 although	 data	 volumes	 have	 dramatically	 increased	 as	 has	 their	
variety	 in	urban	contexts	 largely	due	 to	 the	development	of	micro	devices	 that	
enable	all	kinds	of	human	and	physical	phenomena	to	be	sensed	in	real	time,	big	
data	 is	 not	 peculiar	 to	 contemporary	 times.	 It	 essentially	 goes	 back	 to	 basic	
notions	of	how	we	deal	with	relationships	and	 functions	 in	cities	 that	 relate	 to	
interactions.	Big	data	is	thus	generated	by	concatenating	smaller	data	sets	and	in	
particular	 if	we	change	our	focus	from	locations	to	 interactions	and	flows,	then	
data	 has	 faced	 the	 challenges	 of	 bigness	 for	many	 years.	 This	 should	make	 us	
more	careful	about	defining	what	 is	 ‘big	data’	and	to	 illustrate	these	points,	we	
first	 look	at	 traditional	 interaction	patterns	–	 flows	of	 traffic	 in	cities	and	show	
some	of	 the	 problems	 of	 searching	 for	 pattern	 in	 such	 data.	We	 then	 augment	
this	discussion	of	big	data	by	examining	much	more	routine	travel	data	which	is	
sensed	from	using	smart	cards	for	fare-charging	and	relating	this	to	questions	of	
matching	 demand	 and	 supply	 in	 the	 context	 of	 understanding	 the	 routine	
operation	of	transit.	This	gives	us	some	sense	of	the	variety	of	big	data	and	the	
challenges	that	are	increasingly	necessary	in	dealing	with	this	kind	of	data	in	the	
face	of	advances	in	digital	computation.	
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Introduction	
	
Data	with	respect	 to	cities	only	became	significant	after	world	war	2.	This	was	
largely	although	not	exclusively	driven	by	developments	 in	digital	computation	
and	 statistical	 theory,	 first	 in	 the	 interwar	 years	 and	 thence	 much	 more	
aggressively	 from	the	1950s	on	after	 the	 invention	of	 the	 transistor.	This	went	
hand	 in	 hand	 with	 the	 development	 of	 ever	 bigger	 data	 volumes	 and	 related	
resources,	 as	 well	 as	 developments	 in	 many	 kinds	 of	 electronic	 media	 and	
communications	 technologies.	 Historically,	 as	 populations	 grew	 in	 western	
countries	during	the	 industrial	revolution,	 it	became	more	and	more	 important	
to	count	them,	albeit	as	much	for	taxation	as	other	purposes	of	government.	By	
the	late	19th	century,	automated	machines	were	first	used	to	process	Population	
censuses,	 the	most	high	profile	example	being	Herman	Hollerith’s	development	
of	the	punched	card	tabulator	used	for	the	1890	US	Census	which	led	ultimately	
to	the	formation	of	the	IBM	company.		
	
The	Population	census	was	in	fact	one	of	the	only	systematic	catalogues	of	data	
produced	 on	 a	 continuing	 basis	 until	 national	 accounts	 and	 related	 economic	
data	began	to	be	collected	seriously	and	routinely	in	the	1920s	(Bos,	2011).	But	
right	from	the	start,	data	was	always	big	with	respect	to	the	available	means	by	
which	it	could	be	manipulated.	There	is	a	wonderful	story	from	the	1950s	about	
the	use	 of	 spare	 cycles	 from	 the	 early	 computers	 developed	 for	 the	 Lyons	Tea	
Company	(Ferry,	2010)	where	these	computers	were	used	to	compute	shortest	
routes	 for	 freight	 in	 the	 rail	 system	 so	 that	 British	 Railways	 could	 price	 these	
goods	accordingly.	Dramatic	and	 ingenious	manipulations	had	 to	be	devised	 to	
make	this	possible	such	as	noting	that	to	stuff	the	data	into	the	needed	memory,	
Scotland	 needed	 to	 be	 treated	 separately	 from	 the	 rest	 of	 Britain	 and	 then	
stitched	back	together	after	separate	computation.	In	the	process,	those	involved	
actually	invented	the	well-known	Dijkstra	algorithm	a	year	before	Dijkstra	did	so	
himself	 four	 years	 before	 he	published	 it	 (Graham-Cumming,	 2012).	 There	 are	
countless	examples	such	as	these	in	the	history	of	computing	and	data	during	the	
last	75	years	which	show	how	the	limits	of	computation	were	reached	and	new	
algorithms	and	data	mining	techniques	invented	due	to	volumes	of	the	then	big	
data,			
	
So	big	 is	a	relative	concept	and	some	data	has	always	been	big	with	respect	 to	
how	it	might	be	manipulated	using	state-of-the-art	computation.	But	apart	from	
the	sheer	volume	of	data,	in	cities	data	has	always	been	big	in	another	sense.	In	
cities,	 as	 I	 argue	elsewhere	 (Batty,	2013),	our	 concern	 is	no	 longer	and	 indeed	
never	has	been	exclusively	with	location	but	it	is	with	interactions:	relationships	
between	 locations	 which	 are	 best	 measured	 by	 flows	 that	 have	 volume	 and	
direction.	The	volume	of	data	contained	in	flows	is	 in	general	the	square	of	the	
elements	 that	 define	 the	 locations	 between	 which	 the	 flows	 are	 generated.	 If	
there	are	n 	locations,	then	there	are	 2n 	possible	interactions	between	them	and	
thus	the	data	associated	with	interactions	increases	exponentially	as	the	number	
of	 locations	 increases	 or	 as	 locations	 get	 finer	 and	 finer	 in	 terms	 of	 their	
resolution.	 In	 this	paper,	our	contention	will	be	 that	big	data	can	be	generated	
from	small	through	interactions,	and	that	higher	order	effects	and	much	of	what	
we	might	consider	traditional	data	in	city	systems	is	in	fact	big	data.	Although	we	
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will	definitely	not	conclude	that	the	big	data	revolution	is	a	red	herring,	we	will	
conclude	 that	 bigness	 is	 never	 what	 it	 seems	 and	 that	 bigness	 in	 terms	 of	
computational	time	taken	to	explore	data	which	might	be	quite	small	in	volume	
is	as	important	as	dealing	with	massive	data	volumes.	In	fact	currently	the	most	
important	challenges	involve	not	big	data	per	se	but	computational	schemes	for	
making	 sense	 of	 both	 small	 and	 big,	 with	 a	 focus	 on	 extracting	meaning	 from	
both	big	and	small.	As	we	will	 see,	dealing	with	quite	modestly	 sized	data	 sets	
can	 lead	 to	 a	 proliferation	 of	 strategies	 for	 simplifying	 this	 data,	 and	 thus	 our	
focus	 here	 will	 be	 on	 techniques	 that	 enable	 us	 to	 see	 patterns	 and	 order	 in	
different	volumes	of	data	and	their	interactions.	
	
	
Classifying	City	Data	
	
An	early	 typology	 that	has	withstood	 the	 test	of	 time	was	 introduced	by	Berry	
(1964)	whereby	he	defined	what	he	called	a	‘geographic	matrix’.	This	consisted	
of	 an	 array	 of	 places	 –	 locations	 –	 and	 their	 attributes	 which	 he	 called	
characteristics.	Such	a	matrix	he	argued	was	the	essence	of	geographical	analysis	
in	that	the	two	dimensions	of	place	and	their	characteristics	defined	the	central	
qualities	of	 location.	To	 this	he	added	a	 third	dimension,	 that	of	 time	with	 this	
being	the	third	dimension	of	the	matrix	but	one	which	did	not	have	the	detail	of	
the	other	two.	 In	fact,	he	envisaged	these	additional	time	slices	to	be	of	 limited	
number	but	in	principle,	each	of	these	dimensions	could	take	on	any	number	of	
categories.	In	one	sense,	although	he	did	not	use	the	term,	the	geographic	matrix	
in	 its	 three	dimensional	 form	 is	close	 if	not	 identical	 to	what	 in	data	science	 is	
now	called	the	‘data	cube.		
	
Berry	 then	 proceeded	 to	 use	 this	 matrix	 to	 explode	 a	 spatial	 data	 set.	 In	 one	
sense,	 the	 focus	 was	 on	 place	 rather	 than	 its	 characteristics	 or	 its	 temporal	
positioning	but	by	concatenating	these	dimensions,	one	might	envisage	a	series	
of	 relationships	 in	 single,	 pairwise	 or	 in	 three-wise	 fashion.	 If	 we	 label	
characteristics	 by	 their	 volume	 as	M ,	 places	 as	N ,	 and	 time	 slices	 by	T ,	 then	
there	 are	 7	 possible	 combinations	 of	 relations:	 NM , 	and	T 	by	 themselves,	

NM ⊗ ,	 TM ⊗ 	and TN ⊗ ,	and	then	 TNM ⊗⊗ .	Unpacking	these	further2,	then	
we	might	consider	relations	between	 MM ⊗ ,	 NN ⊗ ,	and	 TT ⊗ .	Significant	for	
this	discussion	 is	 the	 relation	between	N 	and	 itself	which	essentially	 is	 spatial	
interaction	 –	 linkages	 and	 flows	 between	 locations	 but	with	 flows	 across	 time	
between	T 	and	 itself	 (noting	 that	 time	 is	 irreversible	 of	 course)	 and	 even	
relations	 between	 characteristics	 being	 significant.	 Indeed	 traditional	
multivariate	 analysis	 has	 tended	 to	 deal	 with	 comparisons	 and	 correlations	
between	characteristics	in	terms	of	place	or	places	in	terms	of	characteristics.	
	
Berry’s	data	cube	as	we	will	now	call	it	(although	we	are	unclear	whether	or	not	
he	ever	used	the	term)	is	based	on	categories	or	types.	The	notion	of	continuity	is	
																																																								
2	The	operator	⊗ 	is	a	concatenation	symbol	that	includes	several	different	ways	of	interrelating	
the	 variables	 that	 are	 concatenated.	 For	 example,	 NM ⊗ 	relates	M 	to	 N 	through	 counting	
the	number	of	 instances	of	M 	in	 N ,	or	vice	versa,	 the	 intensity	of	M 	with	respect	 to	 N 	and	
vice	versa,	and	so	on.	
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not	particularly	 significant	 in	 this	 conception	although	 it	 is	 entirely	possible	 to	
think	of	characteristics	as	being	splayed	out	on	a	spectrum	–	income	for	example	
–	or	places	defined	from	continuous	representations	of	the	earth’s	surface.	Time	
however	is	another	matter.	Berry	(1964)	considered	this	 in	geographical	terms	
to	 be	 the	 highly	 discrete	 with	 nothing	 like	 the	 richness	 of	 the	 other	 two	
dimensions	but	one	of	 the	 characteristics	 that	marks	out	new	conceptions	 and	
origins	 of	 data	 –	 big	 data	 –	 in	 contemporary	 times	 is	 that	 time	 has	 literally	
exploded.	Much	new	data	is	generated	from	devices	and	people	associated	with	
devices	 that	 sense	 the	 environment	 in	 real	 time	 and	 capture	data	down	 to	 the	
temporal	 resolution	 of	 the	 device.	 This	 in	 principle	 can	 be	 measured	 to	 the	
number	 of	 decimal	 points	 embodied	 in	 the	 hardware:	 32,	 64	 bit	 and	 variants	
thereof	(extended	by	parallel	processing).	
	
Berry’s	 focus	 however	 was	 another	 kind	 of	 data	 explosion	 that	 comes	 from	
generating	 relationships	between	 the	dimensions.	We	will	 illustrate	 these	here	
with	respect	 to	relationships	between	places	–	spatial	 interactions	–	which	can	
also	be	tagged	to	quite	fine	resolutions	of	time.	In	fact	it	is	important	to	be	clear	
as	 to	 the	 way	 the	 data	 cube	 might	 be	 used	 in	 the	 analysis	 of	 city	 data.	 Even	
though	 it	 is	based	on	 three	dimensions	which	can	 in	 fact	be	extended	 to	many	
more,	usually	any	analysis	takes	one	of	these	as	being	the	anchor	point	–	place,	
characteristics	 or	 time	 –	 and	 conducts	 analysis	 with	 respect	 to	 relationships	
associated	with	this	anchor.	Although	the	data	cube	is	generic,	whenever	data	is	
considered	 in	 these	 terms,	 the	problem	 is	usually	structured	 from	one	of	 these	
perspectives	and	 thus	 it	 is	 important	 to	see	 the	size	of	data,	 its	volume	and	 its	
variety	at	least,	in	terms	of	the	particular	perspective	adopted.	
	
It	 is	worth	 indicating	 how	 traditional	 urban	data	 –urban	populations	 collected	
from	 traditional	 sources	 such	 as	 complete	 Population	 censuses,	 for	 example	 –	
can	explode	 into	big	data.	This	was	possible	 long	before	 the	 current	 era	of	big	
data	and	 it	 is	very	clear	when	spatial	 interaction	 is	considered.	 In	1964,	Lowry	
built	a	state	of	the	art	urban	model	for	Pittsburgh	which	divided	the	region	into	
456	zones	between	which	 the	 flows	of	people	moving	 to	work,	shop	and	so	on	
were	 collected.	 The	 data	 was	 collected	 from	 household	 interviews	 for	 traffic	
studies	 but	 the	 volume	 when	 considered	 with	 respect	 to	 the	 matrix	 of	
interactions	was	huge	by	the	standards	of	those	times	–	 936,2074562 = 	possible	
interactions	(trips).	This	was	in	an	era	when	many	mainframe	computers	could	
barely	store	more	than	64K	numbers	and	most	of	the	transport	models	then	built	
always	pushed	up	against	these	limits.	Indeed	it	was	one	of	the	main	reasons	for	
the	 enormous	 problems	 that	 were	 associated	 with	 the	 earliest	 urban	 models.	
Douglas	B.	Lee	 (1973)	 in	his	 famous	paper	detailing	 the	experience	with	 these	
tools,	defined	the	problem	as	one	of	data	‘hungriness’	(Batty,	2014).	In	fact,	right	
from	 the	 beginning	 of	 digital	 computing,	 indeed	 even	 before	 with	 weather	
forecasting	in	the	1920s,	data	had	always	been	big	relative	to	the	devices	we	had	
at	 our	 disposal	 to	manipulate	 them.	But	 the	 explosion	which	 occurs	when	one	
concatenates	data	has	always	been	there	to	explore	and	many	of	our	tools	have	
been	developed	with	respect	to	such	limits.	Witness	the	description	earlier	of	the	
way	what	came	to	be	called	Dijkstra’s	shortest	routes	algorithm	and	partitioning	
of	 networks	 to	 effect	 its	 use	 for	 problems	 too	 big	 for	 the	 then	 computer	
technology.	
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In	 the	 sequel,	 we	will	 explore	 how	 these	 kinds	 of	 problem	 have	 got	 bigger	 in	
terms	 of	 their	 data	 requirements	 examining	 how	we	might	 deal	with	matrices	
with	 millions	 of	 entries	 which	 explode	 from	 spatial	 systems	 defined	 by	
thousands	of	locations.		Before	we	do	so,	however,	we	should	bring	the	story	up	
to	date	with	respect	to	spatial	interactions	by	introducing	recent	developments.	
These	 truly	 do	 broach	 the	 question	 of	 how	 big	 is	 big	 and	 what	 tools	 and	
techniques	do	we	now	need	that	we	did	not	have	in	the	past	with	respect	to	the	
spatial	analysis	of	such	city	systems.	
	
	
The	Emergence	of	Big	Data	In	and	For	Cities		
	
Traditionally	 urban	 data	 sources	 that	 measure	 the	 various	 characteristics	 of	
places,	 say,	 tend	 to	be	spatially	aggregated	 in	 the	way	 they	are	made	available,	
although	 as	 the	 level	 of	 disaggregation	 increases	 towards	 the	 individual	 level,	
temporal	 considerations	 do	 come	 to	 the	 fore.	 In	 fact	 for	 many	 years,	 some	
individual	data	has	always	been	collected	but	only	in	cases	where	confidentiality	
is	unimportant	is	this	data	available.	The	best	examples	pertain	to	traffic	where	
inductive	loop	counters	and	like	systems	have	been	embedded	in	road	surfaces	
to	count	volumes	of	traffic	as	individual	vehicles	and	this	data	can	become	quite	
voluminous.	 In	 fact	 although	 this	 is	 big	data	 in	 the	 contemporary	 sense,	 in	 the	
past	it	has	been	aggregated	and	filtered	to	meet	the	restrictions	of	the	analytical	
methods	–	transport	and	traffic	flow	models	for	example	–	that	are	available	for	
its	interpretation.		
	
Before	we	turn	to	examples	of	big	data,	it	is	important	to	get	some	sense	of	what	
this	term	means	for	it	has	only	become	significant	in	the	last	decade	or	so.	This	
has	 coincided	 with	 the	 development	 and	 dissemination	 of	 countless	 digital	
devices	 that	 sense	 characteristics	 of	 objects	 in	 the	 physical	 environment	 with	
respect	to	their	type,	positioning	and	time	when	they	are	observed.	These	are	of	
course	the	three	dimensions	of	our	data	cube	and	big	data	thus	tends	to	be	data	
that	 is	 dimensioned	 in	 at	 least	 these	 three	 ways	 –	 by	 their	 attributes	 or	
characteristics,	by	their	spatial	positioning	or	location,	and	by	the	time	instant	at	
which	the	relevant	objects	are	observed.	The	objects	can	be	human	or	physical,	
indeed	of	any	type	as	long	as	they	are	associated	with	a	relevant	sensing	device,	
and	very	often,	if	the	object	is	human,	then	the	sensing	device	has	purpose	in	that	
it	can	be	activated	by	the	person	or	it	can	remain	in	passive	mode.	
	
There	are	many	definitions	of	big	data.	The	cliché	is	that	big	data	is	defined	by	its	
volume,	 variety,	 velocity,	 veracity	 and	 value.	 This	 simply	 roots	 the	 data	 in	
questions	 of	 size	 (bigness),	 variety	 (diversity	 and	 extent),	 velocity	 (temporal	
frequency	 of	 collection	 or	 observation),	 veracity	 (level	 of	 accuracy	 and/or	
uncertainty),	 and	 value	 (what	 it	 brings	 to	 various	 purposes)	 but	 it	 might	 be	
objected	 that	 all	 these	 criteria	 apply	 equally	 to	 small	 data.	 However	 the	
implication	is	that	it	is	size,	scale	and	scope	that	pertain	to	these	characteristics	
(http://www.ibmbigdatahub.com/infographic/four-vs-big-data/).	 In	 fact	 big	
data	 is	 much	 more	 than	 these	 four	 or	 five	 ‘Vs’.	 Dutcher	 (2014)	 has	 collected	
together	 some	 40	 definitions	 from	 ‘thought	 leaders’	 across	 the	 industry	 at	 the	
DataScience	 Berkeley	 Blog	 (http://datascience.berkeley.edu/what-is-big-data/)	
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and	 one	 of	 the	 main	 characteristics	 that	 comes	 from	 this	 sampling	 of	 expert	
opinion	is	that	big	data	is	more	about	the	tools	that	are	needed	to	process	it	–	to	
understand	it	–	than	it	size	or	volume.		
	
Often	 big	 data	 is	 hard	 to	 understand	 because	 it	 has	 little	 structure,	 it	 is	
sometimes	but	not	always	large,	and	traditional	tools	are	very	difficult	to	use	in	
its	 processing.	 For	 example,	 very	 large	 quantities	 of	 household	 census	 data	
although	not	any	larger	in	the	volumetric	sense	than	they	have	been	in	the	last	
half	 century,	 often	 stretch	 and	 confuse	 the	 traditional	 multivariate	 techniques	
that	 we	 are	 accustomed	 to.	 Even	 plotting	 a	 scatter	 diagram	 relating,	 say,	
population	income	to	level	of	education	at	the	individual	or	household	level	for	a	
country	the	size	of	the	UK	requires	visualisations	of	more	than	20	million	points	
and	most	if	not	all	statistical	packages	and	even	statistical	interpretations	break	
down	with	such	volumes.	These	by	the	way	would	not	be	regarded	as	big	data	by	
contemporary	 standards	 for	 the	 usual	 rule	 of	 thumb	 is	 that	 the	 data	must	 be	
giga-	 and	 upwards	 in	 size	 for	 it	 to	 be	 classed	 as	 big	 data.	 This	would	 rule	 out	
most	 census	 data	 at	 the	 individual	 level	 but	 as	 we	 have	 argued,	 special	 data	
mining	techniques	are	usually	required	for	data	that	is	in	the	tens,	hundreds,	and	
thousands	of	thousands.	
	
Big	data	which	is	streamed	in	real	time	thus	represents	the	cutting	edge	of	new	
data	about	the	functioning	of	cities.	Much	of	this	data	 is	streamed	from	devices	
that	 are	 simply	 embedded	 in	 the	 physical	 environment	 and	 transmit	 data	 in	
continuous	 fashion	 with	 little	 human	 interference	 or	 management.	 Loop	
counters	in	roads	are	a	classic	example	but	many	related	analogue	devices	have	
been	used	for	many	years	to	record	aspects	of	the	weather,	the	use	of	energy,	the	
breaking	news	and	so	on,	much	of	which	is	captured	in	the	various	dashboards	
that	 have	 been	 set	 up	 to	 pull	 together	 such	 data	 and	 make	 it	 intelligible	 to	
interested	 observers	 and	 policy	 makers.	 These	 dashboards	 have	 mainly	 been	
produced	so	far	to	demonstrate	that	by	pulling	such	data	together	one	can	gain	
an	immediate	impression	of	the	state	of	the	city	(O’Brien	et	al.,	2014;	Kitchin	et	
al.,	2014).	In	fact	the	synthesis	that	is	required	to	make	sense	of	this	is	very	hard	
to	 develop	 as	 many	 of	 the	 data	 sources	 cannot	 be	 integrated	 in	 any	 way.	
Moreover	 much	 of	 this	 streamed	 data	 in	 real	 time	 reflects	 very	 different	
concerns	 for	 cities	 from	more	 traditional	 data	 sets.	 For	 a	 long	 time,	 there	 has	
been	concern	with	routine	functioning	of	cities	in	terms	of	traffic,	crime,	policing,	
the	delivery	of	emergency	services	and	so	on	and	models	that	enable	predictions	
of	 routine	 and	 not	 so	 routine	 events	 have	 been	 a	 major	 concern	 to	 city	
government.	But	these	operational	research	types	of	model	and	their	data	do	in	
fact	function	in	real	time	–	usually	daily	time	spans	–	and	in	this	sense,	this	sort	
of	 data	 used	 for	 these	 is	 being	 enriched	 by	 better	 and	 more	 comprehensive	
sensing.			
	
Real-time	 data	 pertaining	 to	 the	 socio-economic	 structure	 of	 the	 city	 is	 much	
more	 problematic	 to	 collect	 using	 sensing	 devices.	 Unambiguous	 answers	 to	
queries	which	involve	the	human	condition	are	almost	impossible	to	link	to	real-
time	sensors.	Information	on	people’s	choices	are	fraught	with	difficulty	in	terms	
of	 collection	 and	 interpretation.	 The	 reason	why	 so	much	 data	 in	 real	 time	 is	
transit	data	is	that	travel	is	a	relatively	routinised	activity	where	collecting	data	
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about	 unemployment,	 income,	 employment	 activity,	 migration	 and	 so	 on	
requires	human	and	related	agencies	 to	put	 in	place	systems	where	people	are	
required	 to	 answer	 or	 register.	 Some	 data	 is	 being	 picked	 up	 in	 retailing	with	
respect	 to	 sales	data	 from	smart,	 credit,	 loyalty	 cards	and	 so	on	but	 invariably	
where	 this	 data	 is	 collected	 (and	 sometimes	 available)	 in	 real	 time,	 various	
sensing	devices	are	used.	Data	which	 is	 compiled	 from	registrations	are	 in	 fact	
being	made	available	nearer	to	real	time	such	as	house	prices,	some	accounting	
data.	In	these	cases,	the	frequency	at	which	such	data	is	produced	is	hardly	real	
time	–	monthly	at	best	to	date	–	but	this	kind	of	data	depends	on	the	frequency	of	
changes	–	people	make	 changes	 in	 these	phenomena	over	matters	of	days	 and	
weeks	and	months	rather	than	seconds	and	minutes.	A	good	example	of	where	
such	 data	 is	 being	 linked	 to	 dashboards	 is	 the	 Amsterdam	 Board	 which	 does	
contain	 such	 socio-economic	 data	 as	 well	 as	 mapping	 and	 limited	 GIS	
functionality	(Batty	et	al.,	2015).		
	
To	 illustrate	these	 issues,	we	will	 focus	on	transport	where	data	 is	 intrinsically	
big	 in	 terms	 of	 traditional	 data	 collected	 from	 questionnaires	 about	 travel	
patterns	administered	to	individual	travellers	or	to	households,	and	in	terms	of	
new	 sets	 of	 travel	 data	 that	 are	 being	 gathered	 from	 smart	 card	 usage	 for	
collecting	 fares,	 from	 real-time	 movement	 data	 transmitted	 from	 vehicles	
themselves,	 and	 from	 data	 captured	 from	 monitoring	 of	 passengers	 through	
automated	observations.	Not	only	is	transport	data	big	in	the	sense	that	much	of	
it	 deals	 with	 how	 travellers	 move	 between	 origins	 and	 destinations	 thus	
generating	spatial	interactions,	but	also	it	is	big	in	temporal	terms	because	using	
automated	methods	 it	 can	be	 captured	 continuously.	 In	 this	 sense,	 too,	we	 are	
able	to	look	at	transport	data	that	pertains	to	very	short	as	well	as	much	longer	
time	periods,	with	 consequent	 implications	 for	 the	use	of	 this	data	 in	different	
types	of	planning	and	management.	We	will	now	turn	to	these	examples.	
	
	
Traditional	Transport	Interaction	Data:	Big	Data	Generating	Complex	
Visualisations	
	
Ever	 since	 transportation	 planning	 formally	 began	 in	 the	 1950s,	 the	 focus	 has	
been	 on	 potential	 interactions	 or	 flows	 between	 origins	 and	 destinations.	
Different	types	of	traffic	form	the	essence	of	transport	models	usually	based	on	
different	modes	 but	 the	 class	 of	models	 that	we	will	 allude	 to	 deal	with	many	
other	 kinds	 of	 flow	 from	 social	 networks,	 to	 input-output	 trade	 relations,	 to	
patterns	 of	migration	 and	 so	 on.	 The	 concatenations	 that	we	 are	 focussing	 on	
here	are	flows	between	places,	that	is	 NN ⊗ 	which	generate	travel	volumes	that	
can	be	 substantial	 as	 the	number	of	places	 N 	increases	as	we	noted	above	 for	
the	first	land	use	transport	models	such	as	Lowry’s	(1964)	model	of	Pittsburgh.	
Until	quite	recently,	visualising	 flows	has	been	stymied	by	constraints	 imposed	
on	 graphics	 as	much	 as	 by	 the	 size	 of	 the	 data.	 To	 consider	 the	 nature	 of	 the	
problem,	in	Figure	1(a)	we	show	London	divided	into	33	separate	but	contiguous	
zones	 for	 which	 a	 journey	 to	 work	 matrix	 –	 flows	 from	 any	 zone	 which	 is	 a	
borough	to	any	other	–	is	almost	impossible	to	plot	clearly.	33	zones	generates	a	
total	 possible	 number	 of	 trips	 1089332 = 	which	 may	 not	 appear	 to	 a	 large	
number	but	is	very	hard	to	plot	clearly.	We	show	this	plot	in	Figure	1(b)	where	it	
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is	 very	 clear	 that	where	one	 is	plotting	 all	 links	 from	any	 zone	 to	 another,	 but	
excluding	the	intra-zonal	trips	and	also	suppressing	the	asymmetry	of	the	matrix	
where	 a	 trip	 ijT 	which	 is	 the	 flow	 from	 zone	 i 	to	 j 	by	 adding	 the	 flows	 as	

jiij TT + ,	still	produces	a		flow	map	which	is	hard	to	interpret.	Plotting	individual	
trips	 from	one	origin	 to	all	destinations	 is	 the	only	way	 to	make	 the	map	clear	
but	we	 get	 no	 sense	 of	 the	 polycentricity	 of	 the	 system	 from	 this	 visualisation	
and	this	is	what	we	really	need	to	detect	in	the	data.	
	

	
33	Zones	Based	on	London	

Boroughs	
	

The	Full	Observed	2001	Trip	
Matrix	

Trips	from	and	to	
Westminster	 Trips	from	and	to	Hillingdon	

	 	 	 	
	
Figure	1:	Total	Two-Way	Trips	a)	The	Zoning	System	b)	All	Trips	Plotted	c)	Trips	
Associated	with	Westminster	(The	Centre),	d)	Trips	Associated	with	Hillingdon	

(Heathrow).	Note	that	Intrazonal	Trips	are	not	Plotted.	
	
Now	this	is	a	very	crude	characterisation	of	journey	to	work	in	Greater	London.	
Even	 50	 years	 ago,	we	would	 not	 be	 content	with	 this	 level	 of	 resolution	 and	
therefore	we	will	work	with	a	much	bigger	data	set	composed	of	dividing	these	
33	 zones	 into	 their	 constituent	 wards	 –	 typical	 local	 electoral	 districts	 which	
have	on	average	around	10,000	resident	populations	 living	within	 them.	There	
are	 633	 such	 zones	 and	 immediately	 the	 data	 has	 exploded	 to	 4006896332 = 	
potential	 interactions	which	 is	quite	 large	–	not	quite	half	a	million	but	a	 large	
number	for	any	kind	of	statistical	analysis.	In	fact	we	usually	calibrate	a	model	to	
this	kind	of	data	so	that	we	predict	each	of	these	flows.	In	fact	many	of	the	flows	
for	a	system	of	this	size	and	resolution	will	be	small	and	quite	a	few	zero	in	terms	
of	the	observations	but	there	will	always	be	a	total	number	of	flows	predicted	no	
matter	 however	 small.	 And	 this	 means	 that	 we	 have	 to	 face	 dealing	 with	 the	
complete	matrix.	
	
In	Figure	2,	we	show	the	new	more	disaggregate	zoning	system	and	 in	 fact	we	
have	to	make	the	areas	a	little	larger	to	show	this	level	of	detail.	It	is	not	worth	
showing	 a	plot	 for	 the	 full	 trip	matrix	 as	 this	 is	 simply	 a	mess	with	no	way	of	
detecting	the	complexity	of	the	physical	form.	What	we	want	to	do	is	detect	how	
close	different	patterns	from	different	parts	of	the	metropolis	are	and	a	first	way	
into	this	problem	is	using	visualisation.	The	notion	of	examining	trips	origin	by	
origin	or	destination	by	destination	is	an	obvious	way	forward	and	we	do	this	in	
Figure	 2(b)	 and	 (c)	 as	 we	 did	 in	 Figure	 1	 for	 the	 coarser	 resolution	 system.	
Aggregation	 and	 animation	 are	 ways	 of	 dealing	 with	 this	 data	 in	 terms	 of	
building	up	a	structured	understanding	of	this	complexity	but	the	problem	really	
becomes	 serious	 once	 we	 wish	 to	 test	 comparisons	 and	 compute	 correlations	



	 9	

between	the	observed	trip	matrix	and	any	other	matrix	such	as	a	predicted	one.	
Then	the	nature	of	the	problem	begins	to	change	as	we	need	to	plot	all	the	points	
to	find	a	single	relationship	and	to	show	how	this	kind	of	problem	explodes	into	
big	data	which	need	new	methods,	we	will	compare	the	633	x	633	matrix	with	
one	that	is	predicted	by	the	model.	
	

	
633	Zones	Based	on	London	Wards	

	
Trips	from	and	to	the	Ward		

West	End		 Trips	from	and	to	Heathrow	Airport	

	 	 	
	

Figure	2:	Total	Two-Way	Trips	a)	The	Fine	Scale	Zoning	System	b)	Trips	Associated	
with	an	Inner	City	Ward	c)	Trips	Associated	with	Heathrow	Airport	

	
	
We	must	now	say	a	little	about	the	model	that	we	use	to	predict	the	data	that	we	
observe	 in	 the	patterns	 shown	 in	Figure	2.	Data	 about	 cities	 is	 never	 far	 away	
from	analytical	techniques	and	simulation	models	and	without	losing	the	reader,	
we	need	to	say	a	little	about	the	nature	of	the	model	that	we	will	build	to	produce	
predictions	 which	 can	 be	 compared	 against	 the	 data	 in	 Figure	 2.	 The	 model	
predicts	 trips	 ijT ʹ 	between	 origins	

obs
iO 	and	 destinations	 obs

jD 	which	 are	 then	
compared	against	observed	trips	 obs

ijT .	Observed	origin	and	destination	volumes	
–	 obs

iO 	and	 obs
jD –	 are	 computed	 from	 the	 observed	 data	 as	 ∑= j

obs
ij

obs
i TO 	and	

∑= i
obs
ij

obs
j TD .	 The	 model	 is	 an	 unconstrained	 gravity	 model	 that	 computes	

predicted	trips	as	a	function	of	the	observed	origin	and	destination	volumes		and	
an	 inverse	 functions	 of	 distance	 ijd 	between	 each	 origin	 and	 destination	 pair.	
The	 model	 is	 )exp( ij

obs
j

obs
iij dDOKT β−=ʹ 	where	 K 	and	 β 	are	 parameters	 that	

meet	normalising	constraints.	From	the	model,	we	clearly	derive	predicted	trips	
but	 also	 predicted	 origin	 and	 destination	 totals	 ∑ ʹ=ʹ

j iji TO and	 ∑ ʹ=ʹ
i ijj TD .	 To	

measure	how	good	the	model	fits	the	data	we	need	to	examine	the	scatter	plots	
which	 contain	 the	 correlations	 between	 iOʹ 	and	

obs
iO ,	 jDʹ 	and	

obs
jD ,	 and	 ijT ʹ 	and	

obs
ijT .	
	
The	 scatter	 plots	 for	 origins	 and	 destinations	 are	 easy	 enough	 to	 visualise	 as	
there	are	633	observations	 in	each.	However	 for	 the	 trips,	 there	are	a	possible	
total	of	400869.	However	in	terms	of	the	observed	trip	data	some	64%	of	these	
are	 zero	 observations.	 As	 the	 data	 is	 taken	 from	 a	 10%	 sample,	 this	 poses	 a	
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problem.	Should	we	compare	zero	cells	with	predicted	ones	which	will	always	be	
positive	and	should	we	compare	cells	with	a	fractional	number	with	integers?	If	
we	exclude	the	zero	cells,	then	we	still	have	some	142291	to	deal	with,	implying	
that	only	36%	of	our	data	matrix	is	occupied.	This	does	not	change	the	nature	of	
the	 problem	 in	 terms	 of	 its	 visualisation	 and	 the	 search	 for	 pattern	which	we	
illustrate	in	Figures	3	and	4.	
	
a)	Employment	at	633	Origins	

982.02 =r 	

b)	Population	at	633	Destinations	

453.02 =r 	

c)	~	400,000	Trips	from	Workplace	to	
Residence	 322.02 =r 	

	 	 	
	
Figure	3:	Predicted	Against	Observed	Data	a)	Origin	Employments	b)	Destination	

Working	Populations,	and	c)	Trips	from	Work	to	Home	
		
	
Figure	 3	 is	 revealing.	 The	 three	 scatters	 are	 very	 different	 with	 employment	
being	predicted	rather	well,	 residential	population	 less	well,	 and	 trips	showing	
that	 there	are	at	 least	 two	regimes	characterising	 travel	 in	London.	 In	 fact,	 the	
scatter	of	trips	in	Figure	3	is	reveals	a	clear	density	map	and	in	Figure	4	we	show	
this	as	best	we	can.	The	intensity	of	very	small	trips	is	much	greater	than	larger	
ones	 for	 the	 distribution	 of	 trip	 volumes	 follows	 some	 sort	 of	 power	 law.	 In	
Figure	 4	 we	 have	 blown	 up	 the	 lower	 portion	 of	 the	 scatter	 to	 reveal	 this	
intensity	and	this	reveals	that	this	kind	of	data	mining	must	be	supplemented	by	
many	other	 kinds	 of	 visualisation	 and	 analysis	 so	 that	 the	 true	patterning	of	 a	
system	with	this	kind	of	complexity	can	be	laid	bare.	
	

	
	

Figure	4:	The	Density	of	the	Scatter:	Different	Patterns	at	Different	Scales	
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Now	all	this	may	not	look	very	much	like	big	data	but	our	current	extensions	of	
these	 models	 are	 equivalent	 to	 entire	 systems	 of	 cities	 at	 the	 same	 level	 of	
resolution	as	the	Greater	London	model	in	Figure	2.	We	are	working	on	a	model	
with	 7201	 zones	 –	 middle	 layer	 super	 output	 areas	 (MSOAs)	 which	 have	 an	
average	 population	 for	 England	 and	 Wales	 of	 10,000	 and	 average	 number	 of	
households	of	some	4000.	Our	model	is	built	for	all	these	zones	and	immediately	
there	comes	a	problem	of	visualising	the	scatter	of	origins	 	and	destinations	as	
well	 as	 trips	 of	 which	 there	 are	 a	 total	 possible	 cells	 in	 the	 matrix	 of	

5185440172012 = .	Visualising	nearly	52	million	points	on	a	scatter	graph	is	well	
beyond	our	 capabilities	 and	 although	only	10	million	or	 so	 of	 these	points	 are	
likely	 to	 be	 above	 zero3,	 this	 is	 still	 beyond	 the	 capabilities	 of	 this	 kind	 of	
analysis.	We	show	the	zoning	system	in	Figure	5(a)	and	when	we	move	to	flows,	
it	is	impossible	to	use	the	single	origin	many	destination	tool	to	visualise	a	set	of	
flows	 one	 by	 one.	 What	 we	 have	 done	 here	 and	 this	 illustrates	 the	 judicious	
choice	 of	 visualisation	 is	 to	 produce	 a	 single	 flow	 for	 each	 origin	 to	 all	 its	
destinations	using		a	weighted	directional	vector.	For	each	origin	 i ,	we	compute	
the	 average	 vector	 )]/][,/][(),[(],[ nyyTnxxTyxyx jiijjjiijjiiii −Σ−Σ=

!! 	which	 gives	
us	a	single	arrow	that	computes	the	average	strength	and	direction	of	the	flow.	
Much	 information	 is	 lost	 in	 our	 visualisation	 but	 in	 the	 system	 we	 are	
developing,	there	is	zoom	capability	that	is	able	to	illustrate	the	overall	pattern	
at	a	coarse	spatial	scale	and	the	detail	at	the	finest	scale	of	the	zones	themselves.	
We	show	the	coarser	visualisation	for	England	and	Wales	in	Figure	5(b).	
	

	
The	Zoning	System	for	England	and	Wales	Based	

on	MSOA	
	

	
Average	Directional	Flows	from	Population	Centres	to	

Employment	in	E&W	
	

	 	
	

Figure	5:	Visualising	Big	Data	Based	10s	of	Millions	of	Transport	Flows	
	

																																																								
3	This	is	a	guess.	We	have	not	computed	the	sparsity	of	this	52	million	cell	matrix	but	by	the	time	
of	the	meeting,	I	will	have	these	numbers.	
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This	has	been	possible	in	terms	of	data	available	for	the	last	30	years	or	more	but	
only	now	that	we	have	computers	large	enough	are	we	able	to	exploit	the	bigness	
of	 this	data.	This	 is	very	different	 from	the	big	data	 that	we	will	present	 in	 the	
next	section	where	the	volume	comes	 largely	 from	the	temporal	and	individual	
rather	 than	 spatial	 dimension.	 It	 does	 reveal,	 however,	 that	 big	 data	 has	 been	
with	us	for	a	while	and	it	is	computation	more	than	anything	else	–	the	fact	that	
we	can	now	manipulate	it	in	diverse	ways	–	is	one	of	the	ultimate	determinants	
of	the	size	of	data	set	that	we	can	handle,	interpret	and	use	fruitfully.		
	
	
Real-Time	Streamed	Transportation	Data	At	the	Micro	Level	
	
In	 the	1950s,	 data	has	been	 collected	 in	 continuous	 time	 specifically	 for	 traffic	
flow	analysis.	Much	of	this	data	has	been	hard	to	link	to	origin-destination	data	
of	 the	 kind	 just	 examined	 largely	 because	 it	 is	 supply-side	 data	 pertaining	 to	
vehicular	 movement	 and	 not	 to	 intentional	 trip-making.	 However	 with	 the	
advent	 of	 RIFD	 and	 related	 technologies4,	 it	 is	 now	 possible	 to	 collect	 data	 on	
where	people	enter	and	exit	a	transit	system	or	where	they	embark	and	end	any	
journey	if	 the	relevant	collector	 is	 in	place.	Devices	which	are	specially	devised	
for	data	collection	in	question	are	by	far	the	best	as	the	data	that	they	produce	is	
unambiguous	 (although	 there	may	be	 substantial	 noise	 still	 to	 be	 filtered	out).	
Mobile	 devices	 for	 other	 purposes	 such	 as	 phones	 can	 also	 be	 used	 to	 extract	
data	from	call	records	which	locate	the	phone	when	a	call	is	made.	Such	data	is	
being	 used	 as	 proxies	 for	 travel.	 This	 data	 is	 much	 closer	 to	 origin	 and	
destination	data	of	 the	 traditional	kind	as	 long	as	 there	 is	 some	certainty	as	 to	
what	constitute	origins	and	destinations,	and	many	new	directions	are	emerging	
which	seek	to	transform	this	kind	of	data	into	useful	purposes	for	urban	analysis	
(Chen,	Batty	and	van	Vuren,	2015).	
	
Because	 this	data	 is	 recorded	at	 the	exact	 time	when	 the	smart	card	or	mobile	
device	 is	 linked	 to	 the	 system	 in	 question,	 there	 is	 a	 continuous	 or	 at	 least	
continual	 record	 of	 activations	 which	 represent	 real-time	 collection,	 if	 not	
streaming	 to	 some	 archive	 that	 is	 accessible	 in	 real	 time	 itself	 or	 for	 post	hoc	
analysis.	In	short,	the	data	is	as	voluminous	as	the	number	of	activations.	If	this	is	
phone	calls,	then	it	is	the	number	of	calls	made	from	that	device	per	day	or	over	
whatever	unit	of	time	and	space	the	data	is	made	available	or	aggregated	to.	Here	
we	will	use	data	 that	we	have	 from	the	RFID	smart	 card	which	 is	 in	use	on	all	
public	 transport	 in	Greater	London	called	the	Oyster	Card.	This	card	stores	 the	
money	 that	 travellers	 use	 to	 pay	 for	 journeys	 and	 the	 system	 is	 designed	 to	
recognise	the	category	of	payer	as	well	as	the	time	and	place	where	the	traveller	
taps	 in	or	out	of	 the	system.	Travellers	 tap	 in	and	out	on	trains	but	only	tap	 in	
one	buses.	
	
We	have	several	tranches	of	data	from	this	system.	Our	largest	set	is	for	86	days	
in	the	summer	of	2012	(16	June	to	9	September	which	covers	the	period	when	
the	2012	Olympics	were	held)	where	there	were	9,902,266,857,	nearly	10	billion	

																																																								
4	RFID	 –	 Radio	 Frequency	 Identification:	 wireless	 devices	 that	 transmit	 data	 from	 some	
networked	or	standalone	system	that	can	generate	data.	
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taps.	 Of	 these	 taps,	 44%	 were	 on	 buses	 and	 56%	 on	 rail	 which	 is	 tube	 and	
overground	with	 some	mainline	network	 rail.	As	 there	 is	only	 tap-in	on	buses,	
we	can	guess	that	if	round	ways	trips	are	made	by	rail,	then	this	is	about	half	of	
all	rail	trips	meaning	that	there	are	about	60%	more	bus	trips	than	rail.	This	is	
notwithstanding	the	fact	that	our	Greater	London	transport	data	from	the	2001	
Population	census	records	that	that	bus	travel	is	about	60%	less	than	rail	travel	
but	in	the	last	15	years	with	congestion	charging	and	differential	costing	of	these	
two	modes,	we	 think	 these	 figures	 show	 a	 reversal	 of	 patronage.	 All	modes	 of	
course	 have	 increased	 due	 to	 population	 growth.	 The	 data	 shows	 that	
11,535,090	different	Oyster	cards	are	used	for	these	10	billion	taps	which	is	86	
taps	 per	 unique	 card,	 on	 average	 about	 1	 per	 card	 per	 day.	 This	 does	 not	 of	
course	account	for	people	using	more	than	one	card.		
	
This	data	is	quite	unstructured.	It	comes	as	a	flat	file	where	each	tap	is	recorded	
by	 place	 and	 time	 –	 subway	 station,	 location	 of	 bus	 by	 stop	 etc.,	 and	 some	
classification	of	 the	 traveller	such	as	whether	 the	card	 is	 free	 (over	60s	 in	age,	
disabled	traveller	and	so	on),	and	what	payment	category	is	active	on	the	card.	
Generally	 it	 is	 possible	 to	 trace	 the	 behaviours	 of	 an	 individual	 card	 holder	
through	 time	 and	 space	 and	 in	 this	 case	 over	 86	 days.	 The	 degree	 of	
heterogeneity	in	the	data	set	is	enormous	and	this	is	feature	that	makes	it	usable	
for	all	kinds	of	temporal	modelling	at	the	level	of	the	card	holder	conceived	of	as	
an	agent.		However	there	are	critical	problems	with	this	data.	The	analysis	of	one	
day’s	worth	of	data	in	November	2010	from	a	series	we	have	of	3	weeks	data	for	
the	660	tube	and	overground	stations	revealed	that	6.2	million	travellers	tapped	
in	but	only	5.4	tapped	out.	Essentially	this	was	because	barriers	were	up.	A	large	
class	of	Oyster	users	with	free	passes	are	not	fined	for	not	tapping	in	or	out	while	
season	 ticket	 holders	 are	 also	 not	 fined	 as	 their	 cards	 are	 loaded	with	 a	 fixed	
amount	of	money	for	a	period.	This	is	quite	a	 large	loss	of	data.	If	you	combine	
this	with	 travellers	using	more	 than	one	card,	 then	 this	confounds	 the	data	set	
for	transport	analysis.	
	
There	 are	 660	 rail	 stations	 and	 over	 19,000	 bus	 stops	 and	 it	 is	 possible	 with	
some	 analysis	 to	 figure	 out	 how	many	 journeys	 are	made	 by	 tracing	 different	
travellers	in	terms	of	the	tap-in	and	-out		activity	during	the	working	day	for	rail	
at	 least.	We	 have	 attempted	 some	 analysis	 of	 buses	with	 respect	 to	 travellers	
who	have	a	unique	identifier	and	who	hop	onto	buses	and	trains	within	a	certain	
time	 interval	 which	 we	 assume	 captures	 some	 multi-modal	 journeys	 but	 our	
analysis	 is	 limited	 and	 our	 confidence	 in	 extracting	 multimodal	 journeys	 in	
general	is	low.	In	terms	of	the	rail	system,	we	are	able	to	produce	distinct	trips	in	
terms	 of	 segments	 although	 the	 analysis	 of	 round	 trips	 is	 more	 limited.	 For	
example	in	the	2012	data,	we	can	identify	291	million	trips	between	one	station	
and	another	 in	terms	of	a	tap-in	and	tap-out	with	the	most	popular	segment	 in	
the	 system	 the	 trip	 from	Victoria	 to	Oxford	Circus	 and	 vice	 versa.	Waterloo	 to	
Canary	Wharf	 is	 the	most	 frequent	during	 the	morning	 and	evening	peak	with	
Waterloo	and	Victoria	the	two	biggest	volume	hubs	in	the	system.	There	is	much	
data	and	near	data	analysis	of	 this	kind	that	we	can	engage	 in	with	these	 large	
data	sets	and	one	of	the	tantalising	prospects	of	big	data	like	this	is	the	analysis	
of	 regularity	and	heterogeneity	 in	such	data,	notwithstanding	 the	much	deeper	
challenges	of	connecting	this	data	up	to	origins	and	destinations.	
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In	understanding	cities,	origins	and	destinations	of	 trips,	 indeed	of	any	 flow,	 is	
essential	for	understanding	the	rationale	of	the	location	where	those	creating	the	
flow	are	based.	This	relates	to	ongoing	activities	which	are	reflected	in	economic	
or	 social	 features	 of	 the	 location	 which	 in	 turn	 are	 represented	 by	 land	 uses,	
building	types	and	other	physical	aspects	of	the	composition	of	the	place.	One	of	
the	problems	with	smart	card	data	that	is	orientated	to	transit	systems	such	as	
fixed	rail	is	that	the	locations	which	anchor	these	infrastructure	do	not	have	the	
same	 meaning	 as	 origins	 and	 destinations	 in	 terms	 of	 work,	 shopping,	
residences,	schools	and	so	on	which	generate	trips.	It	is	extremely	difficult	to	tie	
places	 where	 people	 enter	 such	 systems	 to	 the	 comprehensive	 patterns	 of	
locations	 that	 are	 described	 by	 traditional	 data.	We	 can	 quite	 easily	 assemble	
flow	 matrices	 and	 assign	 trips	 to	 network	 segments	 such	 as	 lines	 between	
stations	–	although	the	precise	paths	of	travel	have	to	be	inferred,	but	tying	these	
to	places	of	work,	residence	and	so	on	is	difficult.	Some	headway	has	been	made	
using	 smart	 card	 data	 for	 Singapore	 (Zhong	 et	 al,	 2014)	 but	 the	 problem	 is	
perennial	 and	 requires	 additional	 data	 to	 link	 points	 of	 fixed	 infrastructure	 to	
ultimate	 origins	 and	 destinations.	 Synthesising	 or	 integrating	 such	 big	 transit	
data	 with	 origin	 and	 destination	 data	 from	 household	 surveys	 will	 always	 be	
problematic.	 The	 analysis	 of	 phone	 call	 data	 has	 related	 problems	 of	
identification	with	 respect	 to	 the	 functions	 of	 the	 locations	 from	which	 phone	
calls	 are	 made	 and	 the	 locations	 to	 which	 they	 are	 sent.	 This	 is	 not	 simply	 a	
question	of	linking	the	cell	towers	to	the	actual	locations	of	the	phone	users	but	
the	 reason	 why	 the	 phone	 calls	 are	 being	 made	 in	 the	 first	 place.	 This	 is	 an	
ongoing	issue	with	big	data	which	is	streamed	from	sensors	and	mobile	devices.		
	
We	 have	 assembled	 several	 pictures	 of	 transit	 systems	 in	 operation	 from	 our	
Oyster	Card	data.	Jon	Reades	worked	on	finding	shortest	routes	between	stations	
identified	 in	 the	data	and	pieced	 together	actual	 flows	by	assigning	origin	data	
from	 tap-ins	 to	 the	network	by	 finding	 the	 shortest	 routes	on	 lines	 linking	 the	
origin	 to	 the	 destination	 –	 the	 places	 where	 the	 traveller	 tapped	 out.	 He	 has	
produced	a	computer	movie	of	a	typical	week	from	the	2012	data	by	adding	data	
for	 several	 typical	weeks	 –	 not	 the	Olympic	 Games	weeks	 –	 and	 producing	 an	
averaged	version	which	shows	the	peaks	and	troughs	in	the	data	from	Sunday	to	
Saturday.	 The	 weekend	 days	 are	 very	 different	 with	 much	 less	 pronounced	
morning	and	evening	peaks	while	typical	workdays	show	very	distinct	morning	
and	evening	peaks	that	in	themselves	are	very	different	with	a	small	blip	in	the	
central	area	in	the	late	evening	–	the	entertainment	peak.	You	can	see	the	movie	
by	 clicking	 on	 the	 caption	 to	 Figure	 2	which	 shows	 snapshots	 from	 the	movie	
made	by	UCL	Engineering	which	is	on	YouTube.	The	actual	computer	animation	
by	Reades	(2013)	is	shown	on	Vimeo	at	https://vimeo.com/41760845			
	
We	are	developing	several	projects	using	 the	Oyster	Card	data	but	so	 far	 these	
tend	 to	 examine	 very	 different	 aspects	 of	 the	 city	 from	 those	 that	 pertain	 to	
traditional	 flow	 data.	 The	 focus	 is	 inevitably	 on	 questions	 of	 disruption	 and	
smooth	flowing	on	a	fine	scale	temporal	basis	but	we	are	not	able	to	relate	these	
to	 links	 between	 home	 and	 work.	 We	 are	 able	 of	 course	 to	 examine	 the	
variability	of	the	tap-in	and	tap-out	data	with	respect	to	the	station	hubs	through	
two	 interlocking	patterns	of	entries	and	exit	volumes	 that	 reflect	 two	 layers	of	
polycentricity	 which	 vary	 through	 time	 and	 are	 reflected	 in	 the	 peak	 and	 off-
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peak	 flows	patterns.	The	essential	 challenge	 is	 to	 tie	 this	 to	other	data	 such	as	
activity	volumes	of	employment	retailing,	residential	populations	and	so	on	that	
come	from	more	traditional	sources.	In	short	the	challenge	is	to	relate	this	kind	
of	 short	 term	 routine	 big	 data	 sensed	 in	 real	 time	 and	 at	 a	 relatively	 coarse	
spatial	 scale	with	 cross	 sectional	 data	 at	 a	 finer	 scale	 of	 areal	 units	which	 are	
averages	for	a	typical	day	at	a	fixed	point	in	time.	This	is	the	challenge	of	merging	
finer	 temporal	 scales	 based	on	 individual	 behaviours	with	 cross	 sectional	 data	
pertaining	to	aggregate	data	over	wider	spatial	scales.		
	
	

	
Clips	from	the	YouTube	Movie:	Oyster	Gives	Up	Its	Pearls,	made	by	UCL	Engineering	from	Jon	Reades’	Movies	of	the	Data	

	 	 	
	

Morning	Peak	Hour	Monday	8am	 Lunchtime	Monday	2pm	 Evening	Peak	Hour	Monday	6pm	

	 	 	
	

Figure	6:	Visualisations	of	the	Flows	on	the	Rail	Segments	During	a	Working	Day.	
Movie	available	at	YouTube	(https://www.youtube.com/watch?v=9sAugcb2Qj4)		
	
	
Conclusions	and	Next	Steps	
	
Big	data	is	never	what	it	seems.	The	multiple	V’s	that	have	become	its	signature	
definition	 do	 not	 capture	 the	 fact	 that	 quite	 small	 data	 when	 elaborated	 into	
second,	 third	 and	 higher	 order	 effects	 can	 become	 big	 in	 the	 sense	 that	
conventional	techniques	and	models	fail	to	deal	with	its	extended	volumes.	Our	
first	illustrations	here	do	focus	on	quite	modest	data	sets	and	we	are	conscious	
that	 really	 big	 data	 volumes	 that	 come	 from	 interaction	 patterns	 are	 hard	 to	
measure	in	terms	of	their	complexity	through	visualisation.	The	visualisation	of	
data	in	countless	ways	has	proceeded	in	parallel	to	the	big	data	revolution	which	
is	 focussed	 more	 on	 data	 mining	 through	 machine	 learning	 and	 in	 essence	
involves	iterative	techniques	for	searching	for	patterns	in	such	data	that	may	or	
may	not	have	substantive	meaning.	For	example,	our	illustration	of	the	quality	of	
the	 fit	 of	 our	 spatial	 interaction	model	 of	 journey	 to	 work	 in	 Greater	 London	
which	we	show	 in	Figures	3	and	4,	 suggests	 several	 features	of	our	model	and	
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data	that	are	quite	counter	to	one	another.	In	fact	the	intensity	of	points	in	Figure	
4	 –	 the	 fact	 that	 a	 large	 proportion	 points	 are	 inside	 the	 core	 of	 the	 scatter	 –	
probably	need	to	be	separated	out	and	in	some	senses	the	correlations	between	
this	subset	of	points	 is	 likely	 to	have	a	very	different	meaning	 from	the	overall	
scatter.	When	we	get	many	thousands	of	observations,	the	notion	of	the	system	
being	 partitioned	 into	 different	 generic	 parts	 comes	 to	 the	 fore	 and	 this	 is	 	 a	
reminder	 that	 in	 both	 small	 and	big	 data	 sets,	 the	data	 contains	 these	 sorts	 of	
substantive	interpretations	that	need	to	be	considered	whatever	size	the	data	is.	
	
Our	continuing	work	on	contemporary	big	data	is	taking	many	forms	but	so	far	it	
is	mainly	dealing	with	transit	data.	Data	on	energy	flows	and	usage	in	the	smart	
city	is	not	focal	as	yet	while	the	analysis	of	big	data	associated	with	social	media	
is	 and	 may	 well	 remain	 in	 some	 preliminary	 form	 for	 many	 years.	
Representativeness	is	the	key	issue	as	is	meaning	in	such	data	and	it	is	not	clear	
as	 yet	 the	 extent	 to	 which	 this	 social	 media	 data	 pertains	 to	 the	 social	 and	
economic	functioning	of	the	city	which	is	a	prime	concern	of	data	about	cities.	In	
terms	 of	 transit	 data,	 stitching	 together	 different	 data	 sources	 is	 of	 major	
concern.	 Erhardt	 et	 al.	 (2016)	 show	 how	 different	 automated	 sources	 can	 be	
combined	for	automated	passenger	count	and	vehicle	 locations	on	buses	 in	 the	
San	 Francisco	 Bay	 Area	 and	 how	 this	 data	 can	 be	 scaled	 up	 to	 deal	with	 area	
wide	transit.	 In	this	sense,	big	data	 is	created	or	rather	extended	and	conflated	
through	techniques	like	mashups.	These	kinds	of	integration	are	as	important	as	
the	search	for	pattern	in	such	data	and	as	the	big	data	revolution	proceeds,	it	is	
increasingly	 clear	 that	 the	 pronouncements	 on	 the	 end	 of	 theory,	 made	 so	
vociferously	at	the	beginning	of	this	period	by	commentators	such	as	Anderson	
(2008)	 are	 not	 being	 borne	 out	 in	 any	 sense.	 The	 need	 for	 theory	 is	 of	 even	
greater	 significance	 that	 it	 ever	 was	 and	 as	 data	 volumes	 grow	 the	 need	 to	
approach	such	bigness	with	clear	theory	has	never	been	more	important.	
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