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ABSTRACT 
 

In this paper we attempt, somewhat optimistically perhaps, to compare space syntax with spatial 
interaction. At one level, these two approaches to urban spatial structure are non-comparable. Space 
syntax is largely a descriptive technique for visualising spatial relations at the level of connections 
between places while spatial interaction is a predictive model that forecasts how much travel there 
will be between places. Space syntax articulates the system in terms of whether or not a physical 
link, usually at the level of the street system, exists while spatial interaction predicts movement 
between all origins and destinations which are places usually anchored in terms of the street 
network, but which at the level of prediction assume connections between all places. Space syntax 
tends to be grounded at a fine spatial scale while spatial interaction defines places as aggregates of 
activity in much larger zones than the scale of the street system. The main output of space syntax is a 
connectivity matrix of step lengths between streets whereas in spatial interaction, such networks are 
predetermined, measurable in terms of Euclidean distance or generalised cost of travel, while the 
output is the volume of travel prior to this being assigned to the relevant modal network. However 
both approaches define accessibility, in space syntax in terms of streets while in spatial interaction in 
terms of places or zones.  
 
There is however a fundamental way of relating the implicit network graph of spatial interaction to 
the explicit planar type graph of the street network by assuming the planar graph of the network is 
conceived of as a primal problem of spatial interaction while the dual graph linking streets in the 
planar graph is the graph which is used in space syntax. We exploit this duality and show how we 
can move easily between spatial interaction and space syntax from primal to dual and back again. 
This is grounded in a more fundamental graph which is the bipartite graph or list of streets/arcs and 
their intersections/nodes from which the primal and dual emerge naturally. We explore various 
distance and accessibility measures and show how they relate and correlate. We then go one step 
further and consider how various processes of random walking take place in these networks and look 
at the steady states of the primal and dual problems in terms of the likelihood of a random walker 
visiting any node or street. We define primal and dual Markov chains that enable us to generate these 
probabilities although there is some controversy as to whether higher values are associated with 
more important nodes. Nevertheless, this provides a basic framework for comparing primal and dual 
in comparing spatial interaction with space syntax. We illustrate these measures on simple and easy 
to articulate graphs and then extend this to a synthetic network of nearest neighbour links in Greater 
London based on some 699 nodes and 1972 symmetric street or routes/links between zones. We also 
speculate how we might begin to compare the predictions from related spatial interaction models 
with the street accessibility values from space syntax and in doing so, suggest that that there are 
ways forward in comparing outputs at the level of movement on links, notwithstanding that these 
two approaches exist at different level. This paper is a preliminary attack on the problem of linking 
these two approaches which remains problematic. 
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Preamble: The Problem Context 

 
Space syntax is a descriptive technique for working out the relative accessibility or nearness 
of a set of spaces, often defined as streets, to one another with the purpose of comparing their 
relative nearness to the movement associated with each space or street. The assumption is 
that movement increases linearly with accessibility. Accessibility is often called integration. 
It is defined by first identifying a set of streets which are usually lines of unobstructed 
movement, sometimes called axial lines, and then observing whether or not any one street is 
connected to any other which is defined if any two streets are connected (Hillier, 1996). The 
set of links between streets forms an interaction matrix which can be viewed as a topological 
or binary graph on which various operations can take place, for example, to find shortest 
routes from any link to any other which are then used to define the relative importance or 
accessibility of one link to any other. When these accessibilities are summed for each 
particular link, this gives the relative accessibility of a link. One of the features of space 
syntax is that it works with binary (0-1) links between streets and Euclidean distance or cost 
is not a feature of the analysis. The model is only predictive when the accessibility values for 
each street are associated with observed movement in each street which is occasionally used 
to build a predictive model. 
 
Spatial interaction models, on the other hand, predict movement directly between a set of 
locations that can sometimes be interpreted as intersections between streets but are usually 
more generic – centroids defining a location or area – and apply at different spatial scales. 
Interaction or movement is directly proportional to activities that are located at different 
locations and inversely proportional to some measure of the length of the street measured as 
some generalised metric incorporating physical distance, travel cost and/or travel time. The 
model thus predicts movement as a function of these independent variables. Accessibility 
measures consistent with the model’s predictions can be derived but these pertain to 
locations, not streets or links between these locations. The models are parameterised in such a 
way that movement is estimated to be as close as possible to observed data flows. 
 
There are several key differences between space syntax and spatial interaction. Space syntax 
is essentially a descriptive measure of street accessibility which is related to movement in a 
comparative rather than predictive way. It is not parameterised and as such, there is no 
estimation or calibration procedure used to operationalise the model. There is nothing in the 
technique that generates movement as in spatial interaction models. Space syntax does not 
deal with locations but with links between locations – streets – which in turn are defined as 
linear spaces. Links between these spaces are represented not in terms of distance either but 
as logical links which define a topological network. And space syntax does not incorporate 
any measures of activity associated with locations. The independent variables in spatial 
interaction models however are measures of (trip-making) activity at different locations, 
generalised distance between locations, and parameters that define the relative weight of 
these activities and distances. Space syntax is more parsimonious being based on logical links 
between spaces and forming accessibilities from these. Its only independent variable is the 
defined topology of the links which in some instances have been extended to other geometric 
properties such as street orientation (angular variations). These might be parameterised 
(weighted) but there are few if any examples which follow in this direction. After the model 
has been built, accessibilities are then compared with movement; if a strong linear 
relationship exists, then occasionally the model has been used to predict movement, usually 
in situations where new street links are added as part of a design. 
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The key link between the two types of model relates to the underlying network between 
locations. Both techniques begin with the physical network. Spatial interaction models 
predict flows directly from this and other locational data. Space syntax works out 
accessibilities from this network and then compares these to real data and if the correlation is 
good, a linear model can be fitted and used for prediction. The common key is the network 
but there the similarity ends. In spatial interaction, a network is defined as a set of 
intersections between segments – nodes and arcs – which is measured by some generalised 
distance or cost. The network does not privilege nodes or arcs in any particular way as this is 
the assumed backcloth on which spatial interaction takes place. In space syntax, one begins 
with the same network but from these, sets of segments that have their own integrity are 
defined as sequences of links. These form ‘streets’ and are in general composed of more than 
one segment. Once these streets have been defined, space syntax defines connections 
between streets as the existence (1) or not (0) of a node in the original network that defines 
whether or not the streets are connected. In some sense, this is the dual of the original 
network which we might think of as the primal but as streets can be constructed from more 
than one segment, this need not be a strict dual. We will however refer to the space syntax 
network as the dual and the original street segment network as the primal for in some 
senses, this is the key difference contained in the distinction between the two approaches. In 
fact, whether one uses the dual or the primal in space syntax does not make that much 
difference to the ultimate computations of accessibility (see Batty, 2013 for a detailed 
explanation and comparison) but it is not our main purpose here to focus on these empirical 
differences and similarities. Our quest is to see how close the two models are and how one 
might be linked to the other.  
 
In the sequel, we will begin with the common key to both space syntax and spatial interaction 
which is the network. We will first develop a generic representation of the network from 
which the space syntax and spatial interaction variants can be defined. In essence, we invoke 
the idea of a pre-graph – a bipartite graph linking intersections/nodes/junctions or zone 
centroids to segments/links or arcs that are some form of route such as streets. From this 
bipartite graph, all else can be derived but it is important to note that these tools and models 
are a limited set of possible forms that can be defined as graphs, and the way its links can be 
measured. Other conceptions and variables based on locations associated with an underlying 
generic network can be defined which are not directly related to space syntax (Marshall, 
2015). 
 
 
The Generic Representation of the Network 
 
Networks in space syntax and spatial interaction are usually embedded in two-dimensional 
space defined by locations which are points where street or route segments intersect. In 
general, these networks are planar graphs although this can be complicated if the 
representation extends into the third dimension, includes one way movements, or segments 
that cross one another without intersecting. In this context, we will deal exclusively with 
networks in two dimensional space where distance is measured using Euclidean geometries 
and the graph is planar (Barthélemy, 2011) The basic common ground between these two 
approaches is essentially a structural network of locations and paths of movement between: it 
is a graph whose elements are unweighted binary links. There is nothing else which is 
common to the two models and space syntax only uses this graph to derive any and every 
kind of prediction and insight from the model. Spatial interaction takes this graph as a 
skeleton network, loads or weights it with Euclidean distances or costs along its segments, 
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then if incomplete, works out shortest routes to produce a full distance or travel cost matrix 
and then proceeds to use this as one of the basic inputs to the model that predicts flows 
between locations. In short, space syntax is very different from spatial interaction and it 
might be supposed that there is little point in trying to compare these as their basic networks 
of interaction are not the same. But as we will see, there is some interest in making a 
comparison because both models deal with location and movement, and thus it is worth 
attempting to see how spatial interaction ideas can inform space syntax and vice versa.  
 
To provide the requisite intuition for the problem, let us propose a hypothetical planar graph 
of a street system where the nodes are the intersections between the lines (arcs or segments) 
which are the streets. In Figure 1 (a), we show such a street network which is composed of 

5N  intersections and 8L  streets. This network is highly simplified: it is symmetric, that 
is the graph ),( LNG  is non-directed and there are no self-loops. We have not specified any 
weights for the links in this graph and thus it relates only to the system’s topology.  
 
 

                a                                        b  























0  1  1  1  0

1  0  1  0  1

1  1  0  1  1

1  0  1  0  1

0  1  1  1  0
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






















0  1  1  1  0  1  0  0

1  0  1  0  1  1  1  0

1  1  0  1  1  0  1  0

1  0  1  0  1  0  0  1

0  1  1  1  0  0  1  1

1  1  0  0  0  0  1  1

0  1  1  0  1  1  0  1

0  0  0  1  1  1  1  0

 

 
Figure 1: The Primal (a) and Dual (b) Graphs and Adjacency Matrices 

of an Hypothetical Street Network 
 
 

Clearly the planar graph which is Figure 1(a) links the 8 streets through 5 intersections which 
are numbered by the dark circles with the solid line representing street segments. In Figure 
1(b), the streets are numbered by the dark squares and a solid line is drawn if two streets are 
connected through a common intersection. In the primal problem, each street has no more 
than two intersections where it joins other streets while in the dual each street can only 
intersect once with another street. It is this that can be relaxed in space syntax where a single 
street segment can intersect with several different street segments and this changes the nature 
of intersections. In fact, in this paper, arguably the graphs we define, which do not allow a 
street to have more than 2 intersections, miss some of the key elements of urban structure but 
it is a generic criticism of space syntax anyway in that the starting point is always a planar 
graph of local or nearest neighbour links. If the planar graph has N  nodes, there are always 
many less than 2N  links, that is 2NL  . 
 
What we require is a method for building primal and dual network graphs from the same 
basis and to this end, we begin with the planar graph and a list of nodes that are associated (or 
not) with a list of streets. The starting point for both techniques is thus the skeleton network 
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of links between N  nodes each of which we will define as Ni ,...,3,2,1 , and L  lines 
(segments or arcs) defined as Lj ,...,3,2,1 . The basic representation is given by the matrix 

}{ ijAA  which is a binary matrix where 1ijA  if node i  is linked to line j  and 0ijA  if 

no such link exists. From this matrix, we can define the two basic matrices used in spatial 
interaction and space syntax. First the skeletal spatial interaction matrix which we call the 
primal counts the links between nodes as  
 


j

T
jkijik AAU          (1) 

 
where the transpose operator T  reorders the basic matrix A  as TA . The space syntax matrix 
is the dual of this operation and is formed as  
 


j

k
T
jkj AAV   .       (2) 

 
Expressed in matrix notation equations (1) and (2) can be written as TAAU   and AAV T . 
 
To provide some sense of what the primal and dual of these operations means, it is best that 
we introduce a simple worked example where we anticipate that the spatial interaction matrix 
is one where each line links two and only two nodes i.e. there are only ever two nodes which 
represent the beginning and end of each line, while the space syntax matrix (associated with 
this spatial interaction problem) is the opposite – the dual – where each line is now 
considered as a node and from two such nodes, there is only one line. To derive the general 
space syntax problem we need to relax this requirement but to produce the clearest example, 
we will adopt this simplification, and there is no loss of generality in proceeding this way. 
Now the matrix A  can be graphically displayed as a bipartite graph (Borgatti and Everett, 
1997) where we link nodes to lines – street intersections to streets. The example we used in 
Figure 1(a) has 5N  nodes and 8L  lines whose matrix and bipartite graph are defined as  
 

























1  0  1  1  0  0  0  0

1  1  0  0  0  1  0  0

0  1  1  0  1  0  1  0

0  0  0  1  1  0  0  1

0  0  0  0  0  1  1  1

ijA  and 

 
 
Note we define the 5 nodes as 1, 2, …, 5 and the 8 lines as 1,2, …, 8 with no ambiguity from 
the above definitions. The matrix, as we have been at pains to point out, simply records 
which street node or street intersection is associated with which each street line.  
 
The two spatial models that we are examining take this information and deal with it in 
consistent but different ways. The spatial interaction model works by defining a matrix of 
interactions between intersections which are assumed to be centroids around an areal location 
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and uses this matrix to predict the amount of movement. Then from equation (1) using the 
above bipartite graph we form the interaction matrix U  as 
 























 

3  1  1  1  0

1  3  1  0  1

1  1  4  1  1

1  0  1  3  1

0  1  1  1  3

j

T
jkijik AAU  and 

 
 
This is the primal problem. The dual involves defining how each street line is connected to 
any other, thus forming an interaction matrix V  between street lines rather than street nodes 
and this defines a related graph. Then from equation (2) we get 
 

































 

2  1  1  1  0  1  0  0

1  2  1  0  1  1  1  0

1  1  2  1  1  0  1  0

1  0  1  2  1  0  0  1

0  1  1   1  2  0  1  1

1  1  0  0  0  2  1  1

0  1  1  0  1  1  2  1

0  0  0  1  1  1  1  2

j
k

T
jkj AAV  and 

 
 
If we compare the matrices U  and V  with the left and right matrices in Figure 1, then we 
can easily see that these are the same except the main diagonal elements of each of these 
matrices are equal to zero. In fact the main diagonal element reflects the number of paths in 
the graph to get from one node to the same. In the definition of U  above, you can see that 
there are 3 steps to go from node 1 to itself and so on which are displayed from the 
juxtaposition of the two bipartite graphs and matrices A  and TA . For V , there are 2 steps to 
get from node 1 to node 1 via two lines and so on.  
 
One final step remains to get the skeletal configuration matrices used for the two models and 
to do this, we need to slice out any links with more than one path and get rid of the self-links. 
Then the two matrices in question which define the primal and dual problems can be formed 
as follows: 
 









































 jVif

jVif
Y

kiUif

kiUif
X

j

j

j

ik

ik
ik

,00

,11

,00

,11

       (3) 
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It is quite clear that if these operations are accomplished, the matrices U  and V  are sliced to 
remove the path lengths and ensure that the matrices remain binary, leading to the matrices 
X  and Y . These are the same as those in Figure 1 which we repeat here as 
 

























0  1  1  1  0

1  0  1  0  1

1  1  0  1  1

1  0  1  0  1

0  1  1  1  0

X  and  



































0  1  1  1  0  1  0  0

1  0  1  0  1  1  1  0

1  1  0  1  1  0  1  0

1  0  1  0  1  0  0  1

0  1  1  1  0  0  1  1

1  1  0  0  0  0  1  1

0  1  1  0  1  1  0  1

0  0  0  1  1  1  1  0

Y  . 

 
 
Distance: The Key Element in Explaining Movement Using Space Syntax 
and Spatial Interaction 
 
The matrices U  and V  give the number of paths of one step between their respective nodes 
and X  and Y  show the one step paths excluding the self-loops. The simplest way of forming 
a distance between any two nodes in either the spatial interaction or the space syntax problem 
is to use a very well-known technique which involves computing these from powers of these 
matrices. As these operations are identical for any square matrix, we will only illustrate them 
for one of these – the U  matrix – and simply state the related results for the other matrices. 
Then the number of paths of two step length between any two nodes is given by powering the 
number of one step paths in matrix UU )1(  by U , that is 
 

2)1()2( UUUU    ,      (4) 
 
and by recursion, the number of n  path lengths is  
 

nnn UUUU  )1()(  .      (5) 
 
All the other results follow and we can state them as 
 

  YYXXVV  )(;)(;)( nn  .    (6) 
 
These equations give the number of path lengths with and without the original self-loop and 
although we might conjecture that the number of path lengths co-varies with the accessibility 
or centrality of a node or street, then we still need to provide some measure of this 
accessibility from these lengths. In fact to generate all path lengths that are positive, then we 
need to power the matrices up to N  or L  to make sure we get all of these. 
 
We can form two kinds of distance from these path lengths. First we argue that we wish to 
find the shortest path length for any pair of nodes and use this as a measure of distance. To do 



  8

this we examine the number of path lengths at any iteration of equation (4) and if this number 
is different from zero when the number of path lengths on the previous iteration is zero, we 
set the distance to the value of the power – the step length. Then for U  
 

nDthennUandnUif U
ikikik  0)1(0)(     (7) 

 
and all the other step-length distances follow as .,, YXV DDD  This is a rather blunt measure in 
that it is consistent with binary step lengths but does not incorporate actual travel times or 
costs, Euclidean distances or travel costs which we will note a little later but for the time 
being this can be regarded as our first measure of accessibility or integration as it is 
sometimes called in space syntax. The second measure is based on a weighted sum of the 
path lengths. Let us assume a set of weights one for each step length and we call these U

zw  

where ...321  UUU www  Note that we order these so closer/lower step lengths have more 

weight and these are then applied to the number of paths at each step. The second distance 
measure is thus 
 

)()(
1

zUwn ik

n

z

U
z

U
ik 



   ,      (8) 

 
and the other three measures can be defined accordingly )(),(),(  

Y
j

V
j

X
ik n  .  

 
It is now worth demonstrating what these two sets of distance measures actually show for our 
hypothetical example. The simplest distance measures are the step-distances where the value 
of the link between any two nodes is the number of steps a walker would have to make 
between one node and any other (for X  via the street system) and between any street and any 
other (for Y  via the intersection nodes). These matrices are easy to compute from the 
algorithm implied by equation (7) for our example. Then these step distances are 
 

























2  1  1  1  2

1  2  1  2  1

1  1  2  1  1

1  2  1  2  1

2  1  1  1  2

][ X
ik

X DD  and  



































2  1  1  1  2  1  2  2

1  2  1  2  1  1  1  2

1  1  2  1  1  2  1  2

1  2  1  2  1  2  2  1

2  1  1  1  2  2  1  1

1  1  2  2  2  2  1  1

2  1  1  2  1  1  2  1

2  2  2 1  1  1  1  2

][ Y
j

Y D D  , 

 
and it is easy to confirm that these simple path lengths with no more than 2 steps are those 
that result from casual inspection of the graphs in Figure 1.  
 
These matrices are clearly very crude measures of accessibility but as they are very simple 
graphs and only based on binary relations, this is to be expected. The numbers of path 
computations are more detailed and these literally explode as we take more and more powers 
of the matrix for in bigger graphs, there is an exponentially growing number of circuits. To 
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show this, we indicate the number of paths for the matrices 5)5( UU N  and for 
8)8( VV L . These are computed as 

 

























2019   1897   2929   1897   1776

1897   2019   2929   1776   1897

2929   2929   4660  2929   2929

1897   1776   2929   2019   1897

1776   1897   2929   1897   2019

5U  and  

 



































1246   1505   1505   1165   1424   1165   1424   1084 

 1505   1938   1897   1424   1857   1505   1897   1424 

 1505   1897   1938   1505   1897   1424   1857   1424 

 1165   1424   1505   1246   1505   1084   1424   1165 

 1424   1857   1897   1505   1938   1424   1897   1505 

 1165   1505   1424   1084   1424   1246   1505   1165 

 1424   1897   1857   1424   1897   1505   1938   1505 

 1084   1424   1424   1165   1505   1165   1505   1246 

8V  . 

 
The weights for combining the path numbers up to the total number of steps 5)5( UU N  

and 8)8( VV L  are based on the simple expediency of making the weight proportional to 
the total maximum path lengths N  or L  less the step length being considered, that is, 

1)(  nNnwU
i  or 1)(   LwV

i . The weighted distances for the spatial interaction 

and space syntax variants are thus computed as 
 

























194   176   269    176   159 

 176   194   269    159   176 

 269   269   437   269   269 

 176   159   269    194   176 

 159   176   269    176   194 

)]5([)5( U
ik

U δ  and 

 









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We are at last in a position to say something about these distances/path numbers/step lengths 
relative to the problem shown in Figure 1. It is very clear that there is little discrimination 
between the relative positioning of the nodes as intersections in the primal and the nodes as 
streets in the dual. That is, the graphs are symmetric and strongly connected and intuitively if 
we were to measure the relative importance of the nodes in each graph, their in-degrees (and 
out-degrees as the graphs are symmetric) would not show much variation. In the primal it is 
clear that the central node 3 seems most important while in the dual, nodes 1, 4, 6 and 7 form 
a central block that has more importance than the outer block that consists of nodes 1, 3, 5 
and 8. 
 
Spatial interaction models usually predict both the relative flows between nodes that take 
place along streets as well as the total flows destined for each origin and destination (nodes) 
while space syntax is associated with flows along streets that need to be aggregated from the 
relative positioning of any one street connected to all others. In short, both models make use 
of accessibilities which are summations of interactions; in spatial interaction, we predict 
flows from information about ki   nodes as well as flows into i  and k  whereas in space 
syntax, the flows between streets j  have no meaning and what we need to do is model 
the notional flows that take place on each street j  and  . Thus it is accessibilities that we 
need to be concerned with here. As these are all defined the same way as summations of 
distance measures into nodes whether these nodes be intersections or streets, then we will just 
illustrate these for the step distances UD  and VD . As space syntax uses the step distance 
measures VD  as the core element in its tool box, we first define the total step distance for 

street j  as V
jd  and normalise this by the maximum step distance m  as V

jd̂  so that 

comparisons can be made between systems with different numbers of streets; these measures 
are 
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d
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V
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





ˆ
 .      (9) 

  
These measures although referred to as measures of integration by Hillier and Hanson (1985) 
are in fact measures of ‘inaccessibility’ and in most space syntax applications, the inverse of 
this measure is used to define what they call integration. In most recent applications, the 
measure integration appears to have been dropped and the more common measure of 
accessibility following conventional usage in spatial interaction and transportation modelling 
after Hansen (1959) is now being used. In fact the measure is usually taken as the inverse of 

depth V
jd  or V

jd̂  and normalised to sum to 1, that is 
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V
jV

j d

d
d

/1

/1
 , 1

j

V
jd  .     (10) 

 
This measure is sometimes referred to as real relative asymmetry although it is unclear where 
the term comes from and what the asymmetry is that is being referred to (Bafna, 2003). What 
happens in space syntax is that as this measure in equation (10) is associated with the street 
system, the relative variations in the measure (which is the average or total depth of any one 
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street to all others) is plotted for each street across the red-yellow-green-blue colour spectrum 
to produce the typical space syntax map. The primal problem has accessibilities associated 
with the nodes which are locations at street intersections. In exactly the same way, we form 
the same accessibilities and for completeness we define these as follows  
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The accessibilities show the relative intensity of flows at an intersection. If it is required to 
examine particular flows as in the space syntax dual, then the actual distance measures need 
to be used to make these comparisons but this has not been done in space syntax for in 
computing these distance matrices, few have broached the kind of predictive modelling that 
spatial interaction requires. In short although space syntax focuses primarily on the geometry 
and topology of the street network, the street network is simply the starting point for spatial 
interaction and the accessibility measures – which are in fact an essential part of spatial 
interaction modelling – are used quite differently from those in space syntax. 
 
At this point, we have a common framework from computing relative measures of nearness 
or accessibility in both the primal and the dual and in Figure 2 we show how we can map 
these to show variations in intensity for both the distance-step matrices and their 
accessibilities. We will not explore the weighted path number distances in equations (8) at 
this point here but keep these in mind for later applications. 
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Figure 2: The Primal and Dual Spatial Graphs and Their Accessibilities 

The Nodes in the Primal are Street Intersections and the Nodes in the Dual are the Streets 
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You can see clear relations between the primal – the spatial interaction problem – and the 
dual – the space syntax problem – where we simply map the accessibilities into street 
intersections and street segments in the primal and dual respectively but on the planar graph 
of the network which we show in Figure 3. It is essential to note that there is an intrinsic 
asymmetry between spatial interaction and space syntax in that we use the planar graph 
which lies at the basis of the network in spatial interaction to represent both problems. In 
short, in space syntax we collapse the movement onto nodes that define the streets whereas in 
spatial interaction we deal directly with movement on streets as we will elaborate below. 
 

 
 

Figure 3: Accessibility Levels for the Primal and Dual Problems on the Planar Network 
 
 

Models for Predicting Movement and Location 
 
Operations on the primal and dual network graphs do not lead to predictions of movement but 
to measures of connectivity which define indices of accessibility and distance. These indices 
might then be considered as being variables that can be associated or compared with 
activities at locations or movement along streets between locations but this is an additional 
stage in the analysis. In spatial interaction modelling for example, distances are central to 
predicting movements but these are usually defined a priori and although measures such as 
the step distance (or the path) matrices XU DD , and their accessibilities XU dd ,  could be used 
as independent variable inputs, they are not quite in the form required for the standard 
models. In terms of the distance matrices YV DD , and their accessibilities YV dd ,  for the dual 
space syntax problem, these are the only elements that can be used to predict movement, and 
in this case, the distance matrices simply indicate notional flows or interactions between 
streets, that is V

jD   which do not have the meaning of actual flows of traffic per se. Only 

when these are aggregated to V
jd  are we able to compare these to the flow on the relevant 

street segments ki   in order to see how good the fit is to real data.  
 
There are two problems with doing this however. First using the step lengths, the range of 
step lengths whereby a network becomes completely connected might be very narrow. If you 
look at Figure 1(b), the dual graph, then as we have already worked out, there are only two 
step lengths – 1, 2 – before the dual is completely connected; this is far too small a variation 
to use in computing accessibilities even though the range widens once the number of nodes is 
increased. In fact in a large network in the form of a chain, then the range of accessibilities 
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would vary as the number of nodes. However in typical networks which tend to be at best a 
small set of large monocentric clusters at whatever scale of town one is looking at, the range 
is much narrower than we might expect would explain variations in movement. This is a 
major problem in space syntax and is seen in the fact that when comparisons of accessibility 
measures from the dual are made with movements along street segments, the scatter graphs 
are characterised by a small number of measures of accessibility all at integer value, and a 
much larger number of measures of movement. The appearance of these graphs in fact is not 
a random scatter but a more structured striation.  
 
The second problem is that the accessibilities which assume that a street is a node in the dual, 
are derived from links to other streets – other nodes in the dual – and that this implies some 
sort of flow from these other streets. In short it is not clear that if we aggregate, say, the step 
distances in the dual to get the accessibility of a street as   

V
j

V
j Dd , then the interactions 

between streets V
jD   are actually flows. In spatial interaction modelling, however the flows 

are always unambiguously associated with movements as measured by vehicular passenger 
traffic, migration, freight and so on.  There is a third problem that is more generic. In spatial 
interaction modelling, flows are predicted between all intersections or nodes in the street 
network whereas in space syntax, the underlying planar graph does not connect everywhere 
with everywhere else directly and thus flows can only be measured on the direct links in the 
graph. In short whereas in spatial interaction modelling as we have direct links such as ik  
and kz , we also have iz  which does not necessarily exist as a line segment in the planar 
street graph. In short, in space syntax, we only examine direct links in the graph which are 
associated with nodes j  and thus many possible links do not appear in the graph whereas the 
implicit graph in spatial interaction modelling is completely connected. In short, in spatial 
interaction modelling, we distribute trips to all possible links between intersections or nodes 
regardless of whether a separate physical links exists whereas in space syntax, the flows are 
implicitly associated with those on a segment that are measures of traffic. Spatial interaction 
distributes trips whereas space syntax assumes these trips have been already assigned to a 
physical network based on direct street segments. 
 
In fact what has been done in space syntax is to construct models that explain movement as 
function of the direct street segments in the graph using street accessibility. Defining the 
observed movement in a street as obs

ikT , we assume a simple regression such as 

 
kijdT V

j
obs

ik   as same  theis  where   .   (12) 

 
Hillier, Penn, Hanson, Grajewski, and Xu (1993) refer to this relationship as that governing 
‘natural movement’ and their work shows that the only flows that are compared with 
accessibility are those that are measured as composite totals on each link. These are not 
broken down into flows between all nodes in the street graph, and thus implicitly occur after 
spatial interactions have been assigned to network links. This paper also reveals the problem 
of striation referred to above which concerns the fact that the accessibility values are integers 
and cover a narrow range. The levels of variance explained associated with these kinds of 
regressions are rarely more than 0.6 and due to the nature of the data and very often the small 
number of distinct observations, this would not be regarded as a satisfactory predictive 
model. In my view, the advantages of space syntax lie elsewhere in much more qualitative 
but structured discussion of how space is formed and how it is moulded with respect to 
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generic human interactions. In this context, it plays an important role but essentially as we 
implied at the outset, it is not a predictive model. 
 
Notwithstanding this rather negative consequence, we will argue below that as it is virtually 
impossible to take the standard spatial interaction model and derive space syntax from this 
and vice versa, it is still possible to make progress by making changes to the formulation of 
both spatial interaction and space syntax and casting these in a form where direct comparison 
and derivations of one from the other can be made. However before this, we need to 
introduce spatial interaction as a predictive model because it is still possible to use measures 
from the primal to structure its predictive capabilities. The clearest way of introducing one of 
the many variants of spatial interaction is in conditional probability terms. Then  
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ikT  is the flow or trips from zone or intersection i  to k , iE  is some measure of the size of 

activity at location/intersection i  which is the flow to be distributed as trip interactions, and 

ikp |  is the probability or fraction of iE  which is distributed as trips to k . This probability 

model is usually configured as the product of an attractor of the zone kFk,  and some 

function of the generalised distance/travel cost ikc  from i  to k  which we hypothesise as  
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The independent variables are kF  and ikc  and the model is calibrated by finding the value of 

the parameter   which minimises some statistic of difference between observed and 
predicted trips )( ik

obs
ik TTg  . In terms of the operations on the primal network graph, then it is 

easy to see that ikc  could be one of the measures derived earlier so in this form, additional 

variables are defined, or at least there needs to be a driver for trip-making or movement such 
as iE . There are many variants of these models and the model in this form is called singly-or 

origin-constrained (Wilson, 1970). 
 
In fact we might use the accessibility values for the dual in equation (14), rather than the 
distance values in the primal and were we to drop the attractor, then the equation for the 
spatial interaction model becomes 
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and this can be calibrated in the same way. This method of coupling spatial interaction to 
space syntax through the widely used measure of integration (accessibility) shows one way of 
integrating the two models but due to the ambiguities about this index, we consider this to be 
a weak method. Essentially spatial interaction relies much more on Euclidean distance as 
some function of the generalized cost of travel. Nevertheless were we to use the number of 



  15

paths from the space syntax problem V  or Y  and the accessibilities formed from these, 
weighted over many step lengths or simply based on some high step length. This might be a 
preferable variant following equation (15) which we can write as 
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This is closer to the model in equations (13) and (14) where we use generalised travel cost 
which incorporates some measure of distance but it is still a very weak coupling and is 
unlikely to find favour with those who consider that much more powerful functions of 
deterrence need to be used. 
 
It is most unlikely that we can do better than this at this stage for what we need is a much 
stronger method of integration. We already have the key to this for it resides in the coupling 
of the bipartite graph whose matrix is A  which separates nodes from lines in the original 
planar street network. At this point, let us speculate that the way forward lies in this approach 
and what we need to do is find much better measures of distance that take account of this 
coupling other than those based on step lengths. The method we will adopt has been used 
before in several contexts by the author (Batty, 2013) and it consists in slightly changing the 
nature of the two models so that they intersect in a much more basic way. This we will 
broach in the next section before we produce an integrated model, ultimately demonstrating 
this on a large but simplified network of links and zones in Greater London. 
 
A Probabilistic Interpretation of Distance and Connectivity 
 
We can first convert the raw interaction matrices U  and V into stochastic matrices where we 
interpret the cells as being the probability of a node relating to another node and the 
probability of a street relating to another street respectively. Then we define these 
probabilities as  
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We can interpret these as follows. If walker starts at a node i , and then with probability ikP  

moves to node k , then the probability of that same walker visiting a node z  on the next step 
is given as k kzik PP  which is the respective element of the second power of the matrix. Then 

on the n’th step of the walk, we can compute the probability as  
k kzikiz PnPnP )1()(  

which in matrix terms is given as PPP 1 nn . This sequence defines a discrete Markov chain 
and if the matrix P  is strongly connected which it must be for the problem to be meaningful 
and the street system connected, then it is well known that the limit of this sequence is a fixed 
point vector which we can call p . In short, if we begin the walk with a probability vector 
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)1(p , the sequence updating this vector can be written as 1)1()1()(  nnn PpPpp . As this 
vector converges to p , then in the limit we can solve for p  from pPp  . 
 
An exactly analogous process exists if we begin with a walker on a street j  who visits 

another street   with probability jQ . In the limit, we can solve for the steady state 

probability vector qQq   and this gives the overall probability of any walker visiting a street 
if the walk continues indefinitely. As in all Markov chains, the initial distribution of 
probabilities washes out and this is something that we are not sure is desirable for it implies 
that the initial structure exerts a decreasing effect on the final state. In this steady state, a 
walker has the same chance as any other of visiting a node or street regardless of where they 
started from. The key issue is what these vectors actually imply. In fact, they are measures of 
the number of walkers travelling to different places in the system; as such, these may 
correlate with any of the distance measures introduced earlier and we will test this correlation 
in another worked example below. For the moment, let us simply note that p  and q  are 
accessibility vectors for intersections and streets defined from the random walks associated 
with the different probability processes P  and Q . We can in fact define associated processes 
based on the sliced data matrices X  and Y  but we will not do so here as these are close to 
processes defined on the raw interaction data. One last point before we move to a deeper 
view of these processes: clearly as TAAU   and AAV T , then the primal and dual 
processes P  and Q  are related. We can write these as TpAAδP   and AAδQ Tq  where 

pδ  and qδ  are diagonal matrices defined to ensure that P  and Q  are row stochastic. Some 
manipulation of these relations suggests that there are more explicit links between their 
steady state vectors in terms of the initial matrices A  and TA  but we have not taken this 
further as yet. Our purpose here is to work with relations where we define the probabilities at 
a more elemental level. 
 
To introduce these, we can define the probability structure that determines distance measures 
on the underlying graph in terms of the basic data matrix A . Let us define the probability of 
a node belonging to a street as 
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a street belonging to a node as  
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Now these matrices are stochastic and by concatenating them to form the primal and dual 
probabilities, we define 
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These matrices have the following interpretation which are further measures of distance. The 

matrix P̂  records the probability of a walker at node i  accessing another node k  via any 

street j  while the matrix Q̂  gives the probability of moving from a street j  to another street 
  via any node k . To detail this, a walker at any node i  has a probability of accessing each 
street j  and from each of these streets, he/she has a probability of reaching another node k . 
The same type of fixed point vectors result from this process of continually moving from 
node to node or street to street as we indicated above for the processes based on P  and Q . 
This washes out the initial urban structure and insofar as we can define the resultant 

probabilities in the steady state as accessibilities, these are defined from Ppp ˆˆˆ   and Qqq ˆˆˆ  . 
 
These primal and dual processes hold the key to the integration between spatial interaction 
through the primal and space syntax through the dual. Let us write the steady state equation 

for intersection nodes as GCpPpp ˆˆˆˆ  . Now if we post-multiply this by G , we get 

QGpGCGpGp ˆˆˆˆ  . Now as the steady state vector q̂  associated with Q̂  is unique, it is 

clear that QqqQGpGp ˆˆˆˆˆˆ  . Thus it is clear that Gpq ˆˆ   and in like manner, Cqp ˆˆ  . 
This is a very clear relation between the two processes and it is the simplest way they 
interlock. What they mean is as follows: writing the steady state relations in full as  
 


j

jkjk Cqp ˆˆ     and 
i

ijij Gpq ˆˆ  , 

  
then if you are at a node ,k  then the probability of being there is equal to the probability of 
being on any street which is connected to that node, while if you are on a street, the 
probability of being there is equal to the probability of being at any node that is associated 
with that street. 
 
A Comparison of Distance and Probability Measures 
 
We are now in a position to compare all these measures and to this end, we will introduce a 
second more structured graph so that we are able to develop some intuition about the 
relatively positioning of streets and their intersections/nodes. This is shown in Figure 4(a) 
where it is clear that nodes 6 and 9 and possibly 4 are the most central and connected while 
streets 6 and 9, then 7 and 8 seem the most accessible, although this is harder to guess from 
the configuration. However this is to be tested below using the various accessibility 
measures. It is now worth stating the distance measures that we will compute from all those 
introduced in the previous sections. We will list these, noting that for many of these 
measures, these are identical when defined for either origin or destination nodes or streets due 
to the fact that the interaction matrices are symmetric. We will define the measures for the 
primal and dual on the same line below and annotate them with respect to their meaning: 
 

1. basic in-degrees   
k
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4. sliced weighted paths 
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X
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Y
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5. inverse step lengths  
k

U
ik

U
i D/1   




V
j

V
j D/1  

6. sliced inverse step lengths 
k

X
ik

X
i D/1  




Y
j

Y
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7. aggregate probabilities ip    jq  

8. disaggregate probabilities ip̂    jq̂  

 
There is one last measure that we will introduce. So far none of our measures incorporate any 
measure of Euclidean distance. In fact for each street segment j , we can define a measure of 

distance of generalised travel cost jd . We now augment our raw data matrices by weighting 

each node-street link ij  by jd  and we now form a new raw matrix (and its transpose follows 

directly from this) as )exp( jijij dAA  . We use these matrices to construct new values for 

the matrices G  and C  and from this, we compute new steady states which we call p  and q . 
These form our ninth measure: 
 

9.  weighted probabilities ip    jq  

 
In this formulation, we now have a parameter   which we can use to moderate the effect of 
distance. Moreover for any of the limit probabilities we can take the probabilities that pertain 
to any power z  of the matrices in question (for measures 7-9) and also use this as a 
parameter; that is, choose the relevant probabilities  that optimise the fit of the model to data 
but more of this later when we come to empirical applications.  
 
We have computed all these measures for the graph in Figure 4(a) and to compare them, we 
will correlate them. So for the primal problem measures, we show these correlations in Table 
1(a) and for the dual in Table 1(b). 
 

 
 

Figure 4: The Planar Graph/Street Network: a) Nodes and Arcs Labelled b) Nodes and Arcs 
Coloured According to Inverse Step (Accessibility) Values 
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a) 1 2 3 4 5 6 7 8 9 
          

1 1.00         
2 0.97 1.00        
3 0.86 0.72 1.00       
4 0.85 0.72 0.99 1.00      
5 0.71 0.76 0.52 0.58 1.00     
6 0.90 0.89 0.73 0.76 0.80 1.00    
7 1.00 0.97 0.86 0.85 0.71 0.90 1.00   
8 0.97 1.00 0.72 0.72 0.76 0.89 0.97 1.00  
9 0.74 0.63 0.81 0.80 0.54 0.70 0.74 0.63 1.00 
          

 
b) 1 2 3 4 5 6 7 8 9 
          
1 1.00         
2 0.93 1.00        
3 0.89 0.85 1.00       
4 0.72 0.76 0.95 1.00      
5 0.62 0.72 0.57 0.59 1.00     
6 0.77 0.85 0.72 0.69 0.96 1.00    
7 1.00 0.93 0.89 0.72 0.62 0.77 1.00   
8 0.92 0.75 0.70 0.48 0.51 0.63 0.92 1.00  
9 0.08 0.13 0.24 0.30 0.11 0.19 0.08 -0.11 1.00 
          

 
Table 1: Correlations Between Selected Distance Measures for the a) Primal Spatial 

Interaction and b) Dual Space Syntax Problems 
 
 

In both problems, the measure which correlates most with all 8 other measures is in fact the 
in-degree for the basic matrices U  and V . However, we have chosen the inverse step length 
from the sliced data matrices X  and Y  and we have plotted the values of these in Figure 
4(b). Our initial intuition on the relative importance of the nodes is clearly born out with node 
6 occupying a pivotal position and 7 and 8 next with 9 close behind. The less connected and 
more extreme nodes such as 1 and 10 are the least important. Although this is not a definitive 
demonstration of the relatedness between nodes and streets, the space syntax measures show 
that streets 6 and 9 are the most important with  4, 5, 7 and 8 being the next important. These 
mirror the nodal structure also shown in Figure 4(b). It is worth noting that the last measures 
– the ninth based on p  and q  – have been defined using random distances, that is 

)100(randd j  , and it is no surprise that the lowest correlations with the other measures 

occur here. In fact the steady states of the probability measures 7 and 8 are quite highly 
correlated with the other measures but note that for measure 7, this has complete correlation 
with the in-degree measure 1 for both the primal and duals while measure 8 has a complete 
correlation with the sliced in-degree with the primal.  In fact what is clear from this is that if 
we have a very simple structure where the number of in-degrees is the same for each node, 
then the probability measures are likely to have a very high correlation with these in-degrees 
(Batty, 2016). This can be very problematic where we control the nodes or where we limit the 
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connections. It means that the less we differentiate urban structure through connectivity, the 
less differences there are between the measures of accessibility, a problem that is quite 
significant in the empirical applications that now follow. 
 
 
An Empirical Demonstration of Primal-Dual Integration 
 
As we have emphasised, space syntax and spatial interaction represent space at different 
scales with space syntax dealing with the literal physical connections between places while 
spatial interaction deals with generic movements between origins and destinations which can 
then be assigned to the finer scale physical network that space syntax takes as its starting 
point. Spatial interaction deals with all flows between origins and destinations of magnitude 

2N whereas space syntax deals with a subset of these flows 2NL   where only those on the 
physical links of the network are considered. However as we have already illustrated, to 
compare the two approaches, we need to begin with a common network and to this end we 
have constructed a physical network of links from the generalised travel cost and distances 
between some 633 zones which comprise the Greater London Authority (GLA) area. These 
zones are based on wards, the most basic electoral districts which are associated with the 33 
boroughs that make up the area, with on average these zones containing 11,330 resident 
population and 7,181 employment. We show the zones and their centroids in Figure 5(a) 
where we indicate the GLA area in its wider zonal context. 
 
The level of detail of the street network is well below this scale so in this application, what 
we will do is construct a synthetic network from the distance links that are used to form the 
generalised travel cost matrix ][ ikc . To build this network, we first take the 5 shortest links 

for each zone i  and in cases where this does not lead to symmetric links, that is where we 
have a shortest links ikc  but do not have a link kic , we add this link to the network, thus 

giving us at least 5 links from every origin to its nearest neighbour destinations. We also need 
to ensure that on the edge of the area, we also take 5 such links and thus we have a ring of 
centroids in zones outside the GLA area which connect to the 633 zones inside the area. This 
increases the number of zones to 699, with some 66 acting as edge zones outside the area. In 
total, we define 3944 links from these 699 zones giving an average in-degree (and out-
degree) of 5.64, a little greater than the 5 chosen initially for each zone. The total number of 
links is a small percentage of the total possible links, the ratio being less than 1% 

)601,488/3944/3944008.0( 2  N  which is an extremely sparse matrix. It is arguable as  
to whether or not this network is sufficiently rich to pick up the urban structure and 
connectivity of London but at least the links chosen do exist between largely between 
adjacent zones. In this sense, the network can be referred to as a ‘nearest neighbour’ network 
and we show its form in Figure 5(b). 
 
From the previous hypothetical example, the sliced in-degree measures 1 and 2 are the most 
highly correlated with all others and we consider these to be a natural baseline for planar 
graphs in terms of their direct accessibilities. Moreover it is very clear that these measures 
pick up local structure although all the other measures are based on indirect as well as direct 
links some with an appropriate weighting. We show the sliced in-degrees for nodes  

 k iki Xx  and intersections   jj Yy  which reflect the primal and dual problems 

respectively in Figure 6(a) and (b) and it is immediately obvious that these measures reflect 
the fact that the network has been constructed using a rule of thumb starting with 5 links per 
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node. This is likely to give a much more muted distribution of accessibilities for nodes and 
well as paths and this is in fact the case in Figure 6. Moreover the local structure is picked up 
very clearly in street accessibilities in the dual in Figure 6(b) while the accessibility in the 
nodes is dominated by a handful of local nodes that because of their physical juxtaposition 
come out as being more central than the others. It is worth noting that the in-degree structure 
based on x  and y  are equivalent to the steady state vectors from the aggregate steady state 

probability vectors Ppp ˆˆˆ   and Qqq ˆˆˆ  .  
 

 
 

 
 

Figure 5: The Zoning System, Centroids, and Network Links for the London Area 
 

(a) The zones in the GLA Area are coloured grey while in (b) the nodes external to the area but within the 
network are coloured black 
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Figure 6: Nodes (a) and Street Accessibilities (b) Based on In-degree Accessibility 
Measures 

 
The most basic measure used in space syntax is the step length and here we compute step 
lengths in their inverse form for the primal and dual problems. We will define these measures 
again as 

k

X
ik

X
i D/1  and 

 
Y
j

Y
j D/1  and we show their form in Figures 7(a) and (b). 

This is much more intuitively satisfying as a representation of nearness between node 
centroids in the primal and streets in the dual, and a visual comparison of nodes with streets 
seems to confirm that these patterns of accessibility are close to one another. However what 
these measures reveal is that first there are profound edge effects which have probably been  
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Figure 7: Nodes (a) and Street Accessibilities (b) Based on the Inverse Step Length 
Accessibility Measures 

 
 
exacerbated by the way we have built the network to its edges – that is, the edge nodes are  
simply in the network so that they can meet the requirement of each non-edge node having at 
least 5 links to other nodes. Second, the fact that we deal with what is essentially a circular 
system means that the most accessible points are towards the centre of the system. This is a 
generic problem in all spatial analysis, and it relates to the basic issue of closing the system at 
some point to the outside world. Third there is the issue of local versus global connectivity in 
such a network and it clear that the more links that are taken into account, the more the 
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structure at its most local scale is compromised. If we compare Figures 6 and 7, then we can 
see how local structure evolves to global structure as the measure of accessibility is based on 
wider and wider link effects. In fact for the step lengths, the number of matrix powers that is 
needed to span the entire system is some 29 for nodal connectivity and 27 for street 
connectivity. The computation of these step lengths using the matrix power method as 
implied by equations (4) to (7) is quite time-consuming for 699 x 699 and 1972 x 1972 
matrices (all night on my PC Vaio VPCZ21M9E) and when we reach the point where it takes 
at least 29 or 27 steps to reach any and every node or street, this is still an arbitrary cut off. In 
fact it is worth showing how fast this computation is noting that at any point up to 29n , we 
could take the step length matrix as a basis for the computation of accessibility measures. Of 
course when we reach the point where the cells of the step length matrix are positive, then we 
would need to work with the total numbers of path lengths, weighted or otherwise, as in 
equation (8). We show these trajectories in Figure 8. 
 

 
 

Figure 8: Convergence to the Step Length Limit for the Primal and Dual Problems 
 
To see how these make a much bigger difference, we turn to our last exploration of 
accessibility in the primal and dual problems where we formulate the problem in probability 

terms. The steady state equations which we defined earlier as Ppp ˆˆˆ   and Qqq ˆˆˆ   define 
processes where a walker starting from any position in the system – in the primal from any 
node and in the dual from any street, moves from node to node or from street to street with 
the probabilities of moving from one to another gradually reflecting the overall structure of 
nodes or streets with the initial probabilities washing out, diffusing if you like. In a system 
with very little structure which to an extent is our example – and this means we need a much 
better and fuller test of these ideas – then the probabilities of each node or street in the steady 
state are likely to be fairly similar. In short these Markov processes wash away the original 
probabilities and what remains is the true structure. We illustrated in earlier examples quite a 
high correlation between the steady states and the local structure but these were very simple 
graphs with exaggerated structure. Where one has large swathes of metropolitan area with 
similar structure in terms of the street network, then it is likely that the steady state is 
somewhat less distinct then the step method of accessibility just illustrated.  
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We show the node and street accessibility patterns based on p̂  and q̂  in Figure 9(a) and (b). 
Because the nodal structure is quite flat, we have scaled the values and then ranked them as 
we show in Figure 9(c) but this does little to sharpen the structure. In fact in Figure 9(b), the 
pattern is completely flat for the accessibility of streets with the edge nodes soaking up the 
probabilities in an obscure manner. It is worth comparing these patterns formally and in 
Figure 10 we have re-plotted the nodal patterns as thematic maps where each centroid is 
associated with each zone. This makes the patterns much easier to grasp intuitively. It is quite 
clear that the in-degrees are identical to the probabilistic steady state vectors with a 
correlation of 1 (Figure 10(a) compared to 10(c)). The correlation between the in-degrees and 
the inverse step length (10(a) cf 10(b)) is modest at 0.48 while that between in-degrees and 
the ranked probabilistic steady state vectors is 0.86. If we examine the dual street patterns, we 
have similar correlations but we have not ranked the street lines. The strongest correlation is 
low at 0.34 between the in-degrees and the inverse step lengths while that between the 
probabilities as inverse step lengths and the probabilities and in-degrees are both negative but 
less than 0.25. This as we have argued above is due to the nature of the diffusion of 
probabilities on the particular localised street graph that we have used. 
 

 
 

Figure 9: Steady State Nodal and Street Structure a) absolute values of p̂   

b) absolute values of q̂  c) ranking of p̂  
 
Our last issue with respect to the measures developed so far is to provide a partial test of how 
good the accessibility values are where we are able to match them against activities/trips 
associated with nodes and streets. The easiest test is to see how close the nodal accessibility 
values are to the observed activity totals associated with the set of centroids. These observed 
activity totals are origin employment and resident working populations which are formed 
from   
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There is an immediate issue in terms of making comparisons at this level for it is not clear if 
the various access measures are more related to explaining employment or population. In fact 
there is a negative correlation of -0.217 between employment and population which is quite 
consistent with the spatial structure of largely monocentric cities with low population 
densities and high employment densities at and around their centres. There is another issue. 
The zonal structure is organised so that populations in each zones are as close to one another 
as possible. Although this is not strictly enforced as in the US where redistricting of electoral 
districts takes place after each election, there is momentum to make sure that there are no big 
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differences between the electoral population in each ward. This means that a measure such as 
the inverse step length XΔ  which from Figure 7(a) which increases as one gets closer to the 

centre would not explain the spatial structure of population which is more uneven.  
 

a) b) 

 
c) d) 

     
Figure 10: Comparisons of Nodal Accessibility Vectors 

a) In-degrees b) Inverse Step Lengths c) Steady State d) Ranked Steady State 
 
 
So what we do here to normalise these spatial equalities is to compare the accessibility 
vectors to the employment and population densities which we compute as i

obs
i AreaE /  and 

i
obs

k AreaP /  and use these to make comparisons with the accessibility vectors. The correlation 

between these densities is still low with virtually no correlation at 0.055. Nevertheless the 
predictions are better than expected. In fact we compare only the 633 zones in terms of the 
accessibilities and activity density vectors leaving out the 66 external edge of area zones. The 
two correlations between inverse step length and employment and population are both 
positive with population higher at 0.555 than employment at 0.371 and if we then compare 
them with the in-degrees x , these correlations are much lower with no significance. The 
probabilistic measure from the steady state accessibilities p̂  is equivalent to the in-degrees. 
In fact we consider the correlations with the inverse step lengths to be significant and when 
we examine plots of these values, it is clear there are positive relationships with employment 
having a very characteristic scatter which is almost super-exponential. We show these plots 
in Figures 11(a) and (b). To an extent, it is a little surprising that our measures correlate so 
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well with densities for the underlying accessibility measures based on crude step lengths 
whose basic data range from 1 to 29 in value are relatively unsophisticated indices. 
 

a) b) 

 
 

Figure 11: Empirical Comparisons of the Inverse Step Length with a) Population Density 
and b) Employment Density 

 
We can now explore the question of observed movements on the space syntax street links. In 
fact, we know a priori that we do not have the actual trip movements on each link for all we 
have are generic interactions between origins and destinations that in fact have to be mapped 
or assigned to the network before we can produce actual trips on the network. Thus it is likely 
that any analysis of origin-destination trip movements on specific network links is likely to 
be flawed. For each street j  in the system which is associated with a link between 
intersections ik , we can compare the accessibility on that link with respect to the flow 
between an origin and destination from the observed matrix of flows obs

ikT , notwithstanding 

the fact that these are quite different from the actual flows. The problem as we have pointed 
out earlier is that the observed values we have are not those that are actually observed on any 
link ik  for these values combine many trips between origins and destinations which are 
assigned to the link in question. The data too is only a 10% sample from the 2001 Population 
Census. Moreover the actual network structure that we have developed is a nearest neighbour 
network and it does not include long links such as motorways and other major roads with 
restricted access. If our threshold on links were to be relaxed and the notion of streets with 
more than two intersections with other streets to be invoked, we might improve the 
comparison but this requires testing and further development on a much richer and more 
detailed network. In terms of the correlations, the in-degree and inverse step lengths have 
barely any correlation with observed trips at -0.073 and -0.097 (noting that the in-degree and 
inverse step lengths correlate at 0.342). The correlation between observed trips and the 
probabilistic access measure is actually very slightly negative at -0.064 but essentially there 
is no correlation.  Despite these results being somewhat disappointing, they are entirely 
explicable in terms of the data used and the fact that these data does not contain anything 
other than nearest neighbour links to explain urban structure. In the next and last section of 
the paper, we will explore a way forward. 
 
An Integrated Approach  
 
The key to an integration of space syntax and spatial interaction has already been defined 
through the two operations on the basic matrix A  which give rise to the primal and dual 
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interaction matrices TAAU   and AAV T . The distances at different step lengths although 
related from nU  and nV  by nTn AYAU  , have to be normalised for interpretation. However 
if we work with the dual normalisation of the basic matrix as row stochastic probability 
matrices ][ ijGG  and ][ jkCC  from equations (19) and (20) which we restate below as 
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then successive powers of the probability matrices GCP ˆ  and CGQ ˆ  give very clear 
steady state relations qGp ˆˆ   and Cqp ˆˆ  . We have, however, demonstrated that these 
steady state relations wash away the structure that we need to preserve as a key determinant 
of the relevant accessibilities of nodes/centroids and streets, thus we begin with the matrices 

P̂  and Q̂ . 
 
Thus a more basic approach is to assume that the probability matrix P̂  is the determinant of 
the singly constrained trip equation which we stated earlier in equation (13) and now 
elaborate as  
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Without elaborating the density version of the model as above, we will substitute 
employment density ii AreaE  for the employment count and test both counts and densities 

in the following application. We know that the P̂  matrix in the examples so far in this paper 
is very sparse as it is a nearest neighbour network but if we assume it is sufficiently rich to 
detect urban structure, then the spatial interaction model follows directly from equations (24). 
Note that the vectors ][ iEe  and ][ kρ  are not the steady state vectors but origin and 

estimation vectors which we can interpret in spatial interaction terms as employment and 
population. In matrix terms we write the model in equation (24) as 
 

eGCPeρ  ˆ          (25) 
 
which is the primal spatial interaction and then by applying the matrix G  to this equation, we 
generate the dual space syntax model as  
 

eGQeGCGGPeρG  ˆ   .     (26) 
 

eGQρGsQr    ,      (27) 
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where it is now clear that r  and s  are the equivalent to population and employment (counts 
or densities) respectively but now spread to the street network; that is, r and s  are the 
population and employment equivalents that simply relate these to the streets. What this 
means is that population and employment are spread from locations to their connected street 
lines. The predictions of ρ  and r  are thus entirely consistent with one another and can be 
derived from one another as equation (27) reveals. 
 
We have tested equations (25) to (27) on our Greater London network and essentially what 
we do is take the employment for each location and work out the population using the matrix 

P̂  as in equation (25). We do this for both the count and density employments and the data 
that we use is shown in Figure 12. 
 

Employment Employment Density 

 
Population Population Density 

 
 

Figure 12: The Distribution of Aggregated Trips at Origins (Employment) and at 
Destinations (Population) as Counts and Densities 

 
The relative concentrations in Figure 12 are consistent with the fact that the population (and 
its density) are much more spread out than employment counts and densities. In essence, 
what the model does is translate in primal form, the employment counts and densities in the 

upper row of Figure 12 to their population equivalents in the lower row using the matrix P̂ . 
We show these predictions in Figure 13 where we plot counts and densities in the upper row 
and show their form in the lower row through ranking which reduces the spread of these 
thematic maps. 
 
It is very clear that the translation from employment counts and employment densities uses a 
probability matrix which has so little structure within it – from the raw planar graph – that it 
hardly translates employment into population, the results for both counts and densities being 
very close to the original distributions of employment. If you compare the employment maps 
in Figure 12 with the population in the upper row of Figure 13, the correlation between the 
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two is very high. The correlations between predicted and observed population counts is 
negative at -0.150 while for densities, it is positive but low at 0.119. To an extent, this 
reflects the major conclusion of this work: that in many space syntax analyses, because the 
planar graph used is one based largely but not exclusively on nearest neighbours, there is not 
enough structure in this matrix to ensure that we get good predictions of locational activities 
which in turn are derived from trip movements. We will come back to this point as it is 
perhaps the most important finding from this analysis in that it reflects the notion that we 
need to think about space syntax in terms of other approaches and only then can we assess 
how appropriate the approach is. 
 

Predicted Population Count  Predicted Population Density 

 
Predicted Population Rank Predicted Pop Density Rank 

 
 

Figure 13: Predicted Population Counts and Densities from the Primal Interaction Model 
 
In fact all is not lost even from this application, for when we rank the predicted population 
counts and densities, we do see some structure. Compare the observed population density 
with the ranked predicted population density – the bottom right hand map in Figure 12 with 
its equivalent in Figure 13 – and we see a much stronger correlation which shows that there is 
some structure in the matrix P̂ . We can also get at this by comparing a logarithmic 
transformation of the predicted and observed densities as in Figure 14 which reveals a 
stronger significant correlation at 0.507. Doubtless, if we were to produce a more structured 

basic probability matrix – perhaps ,ˆ 2P ,ˆ 3P etc. –then it is possible we would get better 
results even with this simple and somewhat arbitrary example. 
 
The last thing we will do is transform the primal spatial interaction model into its dual space 
syntax equivalent. Equations (26) and (27) illustrate that it is a simple matter to convert 
employment and population activity at centroids or nodes into activity which is spread along 
the links of the system which are streets. This population in fact is ρGr   while the 
employment is eGs  . We could, of course, had we estimates of these activities associated 
with streets, start with employment spread along streets using Q  to predict r  from s  but 
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there is no tradition of working in this manner. It is not out of the question however to begin 
to collect activity along streets and pursue the analysis in this direction. If our streets are 
longer segments with more than two intersections, this makes the analysis more convoluted 
but it is still possible to imagine there are insights into urban structure to be achieved in this 
way. To conclude, we show the street flows of population activity r and employment activity 
s  for both counts and densities in Figure 15. It is very clear that employment dominates these 
spreads and because the basic probability matrices are so sparse and simply connected, the 
spread to population also mirrors employment. It is possible if we rank these links rather than 
use absolute values, that more structure could be extracted from these patterns. But this is just 
one of many explorations that we could continue to make . However we consider that we 
have now pointed the direction and that a number of lines for future research have been 
established. We turn to these by way of conclusion. 
 

 
Figure 14: Logarithmic Predicted and Observed Population Densities  

 
Predicted Dual Population Count  Predicted Dual Population Density 

 
Predicted Dual Employment Count Predicted Dual Empl Density 

 
 

Figure 15: Observed Employment and Predicted Population Counts and Densities for the 
Space Syntax Dual Formulation 
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Conclusions: Next Steps 
 
The key issue in predicting urban movements in spatial interaction models involves the 
independent variables which represent the trade-off between measures of the size of locations 
and the cost or distance from a location where movement is generated and a location to which 

it is attracted. All of this information is represented in the probability matrix P̂  which we 
have articulated in primal form as the interaction between the set of centroids/locations and 
the streets or routes to which they are linked, that is using the matrix ][ ijAA . The primal 

matrix is dimensioned to represent all possible movements between the nodes which is of the 
order 2N  and this in turn is based on the number of street links or segments L  which we 
have suggested is very much smaller than the total number of movements. How good this 
structure of streets is in representing all the nuances and biases in urban structure depends to 
a large extent on this number. In the application to Greater London including external zones, 
there are 699N  nodes with a possible number of trip movements 488,601 )( 2N  whereas 
the nearest neighbour street network has some 3,944 )( L  which means that the number of 
possible links on which trips might be observed is only 0.008, not quite 1%. Were we to 
increase the number of possible links to 2N , then we would need to consider links between 
all these possible streets. In fact, it is most unlikely that all possible trips would use all 
possible links for different trips are assigned to the local street segments in making a shortest 
route between origins and destinations. 
 
The way we have represented the problem in terms of a primal matrix with dimensions 2N  
and the dual matrix with dimensions 2L , involves non-trivial matrix computations in terms of 
size. Were we to have as many segments as possible origin-destination interactions, our dual 
matrices would be of the order 224 NNN   which in the London example would be 

488,601 x 488,601  giving matrices with some 23,873,093,7201 (23 billion) cells. Such 
matrices, frankly, are simply beyond our capability to work with. However, it is most 
unlikely that every street segment relates to every other which is what this would imply, and 
thus this number of cells is a theoretical upper limit. But what it does show is that it is 
absolutely essential to get the structure of the basic graph correct and it is quite clear that in 
this application, we have far too sparse primal and dual matrices. This suggests that we need 
to pay particular attention in space syntax to the nature of the street matrix; and it also 
suggests that if we are to link this to spatial interaction, we need to define the A  matrix in 
much richer terms, taking account of size as well as connectivity.  
 
Throughout this paper, we have been at pains to state that the configuration of the basic 
planar graph from which the dual and primal interaction matrices are defined is critical to 
appropriate applications of both of these approaches and particularly their integration. What 
we now need are better examples with richer structure and then we will be able to assess the 
extent to which our measures of accessibility and the integrated model posed in the last 
section can be developed further. We also need to explore the extent to which the spatial 
system which is represented at the zonal and street scales can be reconciled and this probably 
means that we need to consider how trip movements are assigned to street segments. This 
might in fact be a good criterion for defining the connectivity matrix in the first instance but 
it also requires considerable further research to bring this kind of analysis to fruition. Last but 
not least, we need to say something about whether or not we have made progress with our 
integration of space syntax and spatial interaction here. What is clear is that we have clarified 
considerably how we might develop any such integration but our applications have been 
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disappointing in that our example is not rich enough to show good results involving 
prediction. This is very much reflected in the data we have used, particularly the street 
network but it has enabled us to say something very significant about how we define the 
networks used in space syntax. To progress these to the point where they are useful for spatial 
interaction models, we must devise much clearer rules for the definition of the basic network, 
its topology, and its density on which the various accessibilities we have defined are to be 
measured. Only then will we be able to progress space syntax to the point where it is 
consistent with the use of spatial interaction modelling in prediction. 
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