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Outline

e Some Ideas about Smart Cities and Big Data
« A Short History of Big Data: How Big is Big?

e Mobility, Transit, & Real-Time Streaming: The Oyster
Card Data Set

e Learning about Mobility from the Data
Variabllities — Heterogeneity and Travel Profiles
Disruptions — Signal Failures, Stalled Trains
Variable Locational Dynamics of Demand

< Related Real -Time Data: Bikes, Social Media

 What Can We Learn: The Limits to Big Data
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What Are Future Cities? Smart Cities?

The spreading out of computers into public places &
the built environment and all their consequences
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e The way we access the smart city is through
technologies that let us generate and use data and
its useful equivalent — information (data) is key

e Access through mobile and fixed devices like
phones, smart cards, through fixed sensors which
record transactions and so on

e These usually complement rather than substitute for
data which we collected and used in the past

e This has introduced time into our thinking — in the
past most urban planning for future cities was
timeless —think of garden cities, new towns, master
plans

e Thisis all part and parcel of increasing complexity;
more time scales, more opportunities, more diversity
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THE TINY CLUES
THAT UNCOVER HUGE TRENDS
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A Revolution That Will
Transform How We Live,
Work and Think

MARTIN LINDSTROM Viktor Mayer-Schonberger
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How Big is Data? Big Can Be Small & Small Big

« Data is big with respect to its volume. | know there
are other definitions — velocity, variety etc. but to
me, data is big if it requires large use of computer
memory implying volume.

* |n cities, data usually implies numbers of locations
and their attributes but locations imply interactions.

 Thus data are relations between locations and in
essence if we have n locations, we have n?
Interactions. Thus small data can become big. EG.:
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Examples: Dublin 1837, Ireland 1888, London
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I chair CASA at UCL which I set up in 1995. I am Bartleit Professor In UCL.
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Examples: Dublin 1837, Ireland 1888, London
1955

Harness, 1837 Ravenstein 1888
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biog. bigdatatoolkit. ong

=¥ BigDataToolkit

Big Data Problems
have been around
longer than you think

The Strata Conference is in town and one
presentation that caught my eye was titled
The Great Railway Caper: Big Data in

big data, data processing,

problems, shortest path

https://www.voutube.com/watch?v=pcBJfkE5UwU
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Locations and Interactions: Flow Systems in
Cities

Elsewhere | have argued that we should treat cities as
flow systems — as networks. This has been a focus for a

long time in transport and land use and we have
always been up against the problem of big data.

So let me begin my illustration of this dilemma and
how we are thinking about it with some problems that
have very small data. Problems of spatial interaction

where our numbers of locations is small < 100, ~ 50
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Understanding and Visualising Flows

An early model circa 1967-8 Central and NE Lancs

Urban Modelling

Algorithms, Calibrations, Predictions

M. Batty (1976)
Urban Modelling
Cambridge UP

Flows shown are
the sum of trips in
both directions. Only
trips > 300 shown

Distribution of work trips
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Even our statistics breaks
down when we get large
numbers like over several
thousand as you can see on
the left and above right for
400K data points where the
pattern is highly convoluted.
This is from a gravity model.
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Now what happens when we really do scale up to the
level of MSOAs of which there are 7201 in the UK — do
we partition and argue we don’t need to scale up to
n°=7201%=51,854,401.

Circa 52 million points is an issue but our models run in
a matter of seconds but that is a lot of data to store -
ok it is sparse but sparsity isn’t structured so we can’t
easily partition and in any case we want to compute
any possible flows between central London say and
Newcastle. Here is the problems scaled up and this is

what we are grappling with at present.
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(a) MSOA (A=7201) (b) LSOA (A=34753) (c) OA (A=181408)

Figure 8.2: ONS Geographies for MSOA, LSOA and OA levels.
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The Web and the Desktop: Users are also Data

We are building a model of the UK — well E&W at
present — we will add Scotland before long — which is
of the nature we have been implying - Without going
iINnto details, the model takes a few seconds to run — it
will take a lot longer when finished as we will add
sectors and of course the number of big data we
have to hold in RAM might be very large — currently
we need to hold 4 such 52 million sized matrices — we

may need to go up to 8 in time and that will involve a
lot of packing and moving in and out of core, | think

- Centre for Advanced Spatial Analysis i




But the real issue is users — if our model is this large, and
we have many users, then our data problem is
exploded by the users -

Our big data is our original and predicted data from
the model, times the number of users. Why are users
data ? Well because they are using data differently —
they are making their own predictions and thus
scaling up the data.

We could have one model for each users but we
don’t know who the users are? We thus want them to

access this on the web. This iIs where it all hits the fan ..
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The Web and the Desktop: Users are also Data

Here is a block diagram of how

we are currently organising things

Client-1

Server

Model on server side; Maps on

the client side

CI |ent'2 i Can we reverse this?

Not really — the matrices are

We also can’t assume the client

. ; too slow to download to client?
Client-3 '

Is fast enough for computation.

Frankly at this point, | am out of

Cllent'n my depth
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JUANT....

Simulating the Impacts of Large Scale Change in the UK

. Explore QUANT |

/- : I\.
About QUANT :I
i C

http://quant.casa.ucl.ac.uk/
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Real-Time Streaming: What Sort of Data ?
London Mon 30 Jun @ 20:47:27
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London Panopticon
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Real-Time Streaming: The Oyster Card Data Set

e Tap at start and end of train
journeys

e Tap at start only on buses

e Accepted at 695 Underground and
rall stations, and on thousands of
buses

< Many Variants of the Data Sets

e 991 million Oyster Card taps over
Summer 2012 - this is big data

e Quality of Data
 What Can We Use It For
e Missing Data and Noise
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UCL ENGINEERING
Change the world

Home - Projscts — y i

OYSTER GIVES UP PEARLS

How studying millions of Oyster Card journeys reveals
London's ‘polycentres’

Researchers from UCL have analysed milions of Cyster Cand journeys in a bid to
understand how, why and where we travel in London.

Professor Michael Batty (LICL Centre for Advanced Spatial Analysis) and Or Soong
Hang (UCL Management Science and [nnov
physics to their mountain of raw data.

n} applied the techniques of statistical

The pair joined forces with a computational social sciant

nd a physicist, both based
in Paris, to explore patterns of commuting by tube into central Londan.

They used Trensport for London's database of 11 million records taken over one wesk
from the Oyster Card electronic ticketing system.

Latest news from UCL Engineering

hew wel privacy system could
revolutionise the safety of surfing

UCL host Google Girls Ceding
Programme with Generating Genius
and University of West indies

Professor Polina Baywel to Give Royal
Society Lecture

@ FT @nakmicdownik: Am giving a
ENGins seminar today for

N3 3

UCL engineers welcome - Roberts G08
G:30pm. httpal.

RT (@Centre4EngEdy: We're hiring!
Multi-talented Centre Administrator
elp us launch and expand!




And how can we make sense of this

Bt psimulacra blogs.casa.uel ac,uk/
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This of course was the thing that Lt Henry Harness did
In Dublin in 1837 and what Minard et al. did a little
later. In our LUTI models, this is an enormous problem
as the scale of this assignment to networks is different

x> Centre for Advanced Spatial Analysis b




Variablilities — Heterogeneity and Travel Profiles

First we will look at some of the data and how it varies
In terms of the diurnal flows usually morning and
evening peaks, with a small blip (peak) around 10pm
at night

"o R Centre for Advanced Spatial Analysis &
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Oyster Card Data - interpreting urban structure,
multitrips, etc.

Stratford

Morthern Stations D

Motting Hill
Gats

Museums

London Bridge
e

Farfiament

Roth C., Kang S. M., Batty, M., and Barthelemy, M. (2011) Structure of Urban Movements: Polycentric Activity
and Entangled Hierarchical Flows. PLoS ONE 6(1): €15923. doi:10.1371/journal.pone.0015923
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Comparing Variabillity for different time intervals for
Three World Cities: London, Beijing and Singapore

Table 1. Summary statistics of one-week of smart-card data (metro trips only)

London Singapore Beijing
Monday 3,457,234 2,208,173 4,577,500
Tuesday 3,621,983 2,250,597 4,421,737
Wednesday 3.677.807 2277.850 4,564,335
Thursday 3,667,126 2276408 4,582,144
Friday 3,762,336 2,409,600 4,880,267
Number of stations (1) 400 130 233
Number of tube line 13 4 17
Area (2) 1,572 km’ 718.3 km? 2267 km?
Total population (3) 8.63 million 5.3 million 21.15 million
Ridership of Metro 20% 35% 21%
Length of metro lines  402km 182km 465 km

(MRT+LRT)

{ 1) Number of stations is the number of stations with smart-card records generated.
{2) The area of Beijing only counts the area enclosed by the 6th ring road for a fair comparison.

(3) From the World Population Review, hup://worldpopulationreview.com/world-cities/ accessed 17 January 2016

Zhong, C., Batty, M., Manley, E., Wan, J., Wang, Z., Che, F., and Schmitt, G. (2016) Variability in
Regularity: Mining Temporal Mobility Patterns in London, Singapore and Beijing using Smart-Card Data.,
PLOS One, http://dx.doi.org/10.1371/journal.pone.0149222
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From 1 minute intervals to the whole day

Variability measure of temporal patterns (tap in time)
1 .00

factor(city)
B8 Beijing

variability

B8 London
ES Singapora

(& a0 T } 5 Gl B0 a(
measures with increasing time intervals (minutes)
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Figwre 1. Variability of regularity in the trip matrix over time.

Note: Ench box plot shows the vanability of 400 stations over time measured at different temnpaoral scales.
Owerall, eight subpleds give a similar trend where lower variability appears during peak hours (aroand 9 am in
the moming and 6pm in the evening). More details can be captured as differences of vannbility between each

time unit are magnified os we decrease the temporal scale from 12k 1o 4 minutes
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Comparing Variabillity for different time intervals for
Three World Cities: London, Beijing and Singapore
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Maps of Underground and Rall
stations in London visualised
by the proportion of regular

s s S5 trips
T originating at each location

ending at each location

starting and ending at each
location
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Disruptions — Signal Failures, Stalled Trains

« We will look at three disruptions - the Circle and
District Lines which had a 4 hour stoppage on July
19th 2012

e And a Bus Strike in East London and how this shows
up in the data

< And typical pattern of delay on all modes visualised
for Greater London

: Centre for Advanced Spatial Analysis |
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Increased Travel Time

Greater than 2SD above mean increase on usual
travel time for that Oyster Card

Size equal to proportion of users that regularly travel from station
during time period, and travelled that during disruption




The Public Transport System in Terms of Vehicle Flows

Tube Cutputs

Status: Distupted line
segments

Stations: Higher than mean
wratt

Calibration

Bus * | Buses: Estimated positions

Bus Stops: Higher than mean
wait

Calihration

Heavy Fail

Trains: Late running services
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Delays from Tube, National Rail and Bus Fused
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Locational Dynamics of Demand

We are currently using information theory to figure out how much
iInformation from trips is transmitted from station to station
through time by working out how many passengers are in
stations or on trains in stations over time. We are using the
concept of transfer entropy to do this. | don’t have time to say
much about this but here is a picture about this for one line
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Second we are working with the Oyster data again with
Melanie Bosredon in out group and Marc Barthelemy
INn Paris on extracting clusters from the travel data
using a new method of defining intensity. | will show
this as a simple movie of origin and destination
Intensities as they change over time of day.

Number of hotspots (stations)
vs. time
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Related Real-Time Data: Bikes, Social Media

A lot of data is now coming online for travel and one of our group
Oliver O’Brien has some 97 bike schemes world wide for which he has
online data in real time - Bikes Data — 4200 bikes, started Nov 2010, all
the data- everything — all trips, all times, all stations/docks
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At 2010=10-04 08:20:00 there were 62 bikes in use,

Amnimations of Public Bike Movemenis
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Amnimations of Changes in the Bike Nodes: Docking

More Analysis
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Bike-o-Meter
casa.ucl.ac.uk/bom
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The Website: Real Time Visualisation of Origins and
Destinations Activity

http://bikes.oobrien.com/london/
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London Twitter Cloud
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What Can We Learn: The Limits to Big Data

We need to add geo-demographics to this data — how
— we barely have any possibility of doing this
because of confidentiality

We only have a difference between young and old in
terms of the card data

Chen Zhong my post doc has done a lot of work on this
relating to extracting such data from related data
sets producing synthetic results —our paper in IJGIS

International Journal of Geographical Information Science, 2014 e
hitp:/dx.dor.org/10. 1080/13658816.2014.914521

Taylor & Francis
Taylhor & Franch Group

Detecting the dynamics of urban structure through spatial network
analysis

Chen Zhong*, Stefan Miiller Arisona™®, Xianfeng Huang®, Michael Batty®
and Gerhard Schmitt”

: Centre for Advanced Spatial Analysis &
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