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Multifractal to monofractal evolution of the London street network

Roberto Murcio,* A. Paolo Masucci,† Elsa Arcaute,‡ and Michael Batty§

Centre for Advanced Spatial Analysis. University College London, First floor, 90 Tottenham Court Road, London, United Kingdom
(Received 7 May 2015; revised manuscript received 26 August 2015; published 17 December 2015)

We perform a multifractal analysis of the evolution of London’s street network from 1786 to 2010. First, we
show that a single fractal dimension, commonly associated with the morphological description of cities, does
not suffice to capture the dynamics of the system. Instead, for a proper characterization of such a dynamics, the
multifractal spectrum needs to be considered. Our analysis reveals that London evolves from an inhomogeneous
fractal structure, which can be described in terms of a multifractal, to a homogeneous one, which converges to
monofractality. We argue that London’s multifractal to monofractal evolution might be a special outcome of the
constraint imposed on its growth by a green belt. Through a series of simulations, we show that multifractal objects,
constructed through diffusion limited aggregation, evolve toward monofractality if their growth is constrained by
a nonpermeable boundary.
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I. INTRODUCTION

Street networks are ubiquitous worldwide, forming possi-
bly the most important and articulated infrastructural network.
These have been considered to be mathematical objects since
the 18th Century [1], and with the discovery of Zipf’s law
and the conjecture of Gibrat’s law [2–5] they have gained
notable relevance within statistical physics. In addition, urban
patterns share many statistical and morphological similarities
with biological and physical phenomena, suggesting that
common organizational principles might be underlying these
processes [6,7].

Such patterns can be analyzed through fractal geometry.
Originally formalized in the 1970s by Mandelbrot [8], it wasn’t
until two decades later that fractals were applied to describe
urban morphology [9–12] and urban growth [13,14]. Until
recently, a single fractal dimension was employed. It is well
recognized now that a spectrum of fractal dimensions needs to
be employed to fully characterize systems that present different
fractal properties at different scales and regions [15], as is
the case of urban systems [16–18]. These systems are called
multifractals.

Fractal objects are in general described through a single
measure called the capacity or box-counting dimension, which
measures the amount of space filled by the fractal, disregarding
local density differences. These differences are nevertheless an
important aspect to evaluate and compare systems according
to their local characteristics, such as measuring performance
in cities. In addition, the box-counting dimension is extremely
sensitive to external parameters and has been proven to lead to
poor results [19,20].

A measure conveying more information about the internal
components of a fractal structure, directly relating the local
density to a measure of proximity between any pair of elements
of the structure, is the correlation dimension [21].

Nevertheless, this dimension only gives a general balance of
the distribution of its elements, losing any information on the
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heterogeneities related to particular zones. This is illustrated
in Fig. 1, where two very different areas are highlighted in the
street network of Cardiff.

The single correlation dimension associated to the street
network does not give any information on the differences
between the north and the south layout. The latter has more
regular and compact structures, while the north one tends to
be more curly, with a minor number of intersections. These
differences in density convey important information about the
activities taking place in cities.

In general, high densities of intersections are found only
in a few places in a city, whereas the majority of the network
has a small number of intersections. Let us denote by α0 the
areas with an intersection density larger than ρ0, and by α1

the areas with an intersection density ρ1 such that ρ1 < ρ0.
The correlation dimension for each of the two sets given by α0

and α1 will be different. It is expected that the fractal dimension
for the denser set (α0) will be close to two, while that for the
set (α1), where the points are scattered all over the area, will
be close to zero [8].

There are many systems that behave in such a way, where a
single fractal exponent is unable to capture the complexity
of the fractal structure. This is the basis for multifractal
analysis, which was introduced by Mandelbrot to study
turbulent flows [22,23]. In general, if an object or a process
can be described with a single fractal dimension, it is called
a monofractal, otherwise it is labeled as a multifractal, and an
infinite number of dimensions could be employed to describe
such processes [24–26]. Systems that show different local
distributions for its elements or some of its properties can
be commonly found in nature, such as the growth proba-
bility distribution of a diffusion-limited aggregation process
(DLA) [27], the energy dissipation distribution in a network
of resistors [28], the variability in human behavior [29], and
the soil’s particle-size distribution [30].

In the case of cities it had been extensively argued
[16–18,31,32] that a single fractal dimension is not enough
to describe its complex nature. In this paper we perform the
multifractal analysis of the historical evolution of the London
street network, by looking at nine digitized maps ranging from
1786 to 2010.

We found that as the city grows, the street network pro-
gressively fills the available space contained within the green
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FIG. 1. (Color online) The street network of Cardiff, UK, along
with a zoom of two particular areas.

belt, and thus creating over time a more homogeneous pattern.
This process results in the gradual loss of multifractality, in
the sense that in the most recent time layers, the London street
network could be described by a single fractal exponent.

We argue that this multifractal to monofractal transition
could be the result of the imposition of the statutory green
belt around London in 1935 (1938 Act) [33], leading to a
condensation phenomena in which the city fills the remaining
space delimited by the boundaries. We test our conclusions by
introducing and analyzing the growth of a diffusion limited
aggregation model (DLA), constrained by a nonpermeable
circular barrier.

A. Dataset

In this work we employ a unique dataset, consisting of the
digitized version of nine historical maps for the area contained
in the Greater London Authority (GLA), from 1786 until 2010.
This dataset has already been studied in several works where
further details can be found [34–36].

From each of the historical GLA maps, we extract the
street network corresponding to only the urbanized area as
defined by the methodology described in Ref. [37]. We then
derive the street intersection map for each of the nine points
in time; see Fig. 2. Our analysis is then reduced to the
study of the multifractal properties of street intersection point
patterns (SIPP) embedded in the two-dimensional Euclidean
space.

Though multifractal analysis of point patterns is commonly
used in many fields (cell colonies, electrochemical depositions,
galaxy clusters distribution), to our knowledge this approach
has never been used before in urban studies. We argue that
for the statistical analysis, it is equivalent to use the street
intersections as it is to use the street segments. This is the case
because the degree distribution of an urban street network is
nearly Poissonian, and hence the average degree for the street
connectivity and its variance are well-defined quantities.

Moreover, the SIPP has been proved to be a quite resilient
structure over time. Much of the original structure of the so-
called City of London at 1786 is still at place at present times.
This situation can be observed for almost any major city in the
world, which makes this approach a very good one to perform
a historical analysis of cities.

II. MULTIFRACTAL MEASURES

A. Review

In this section we provide a brief review of multifractal
measure theory. The uninterested reader could skip this
part and go straight to Sec. II B, where we summarize its
applications to street networks. A brief review of basic fractal
theory is given in Appendix A.

Let us recall that when a monofractal object is characterized
through a single global exponent, this is computed by looking
at the distribution density of a specific measure, and it is
implicitly assumed that this distribution is uniform [38].
Nevertheless, in real systems there exist many other intensive
quantities of interest, such as the temperature, the hardness of a
material, the electric field, and the density itself, among others,
whose distribution is nonuniform, in addition to sometimes
presenting discontinuities at different scales.

This led to the definition of a local fractal dimension for
each of the different regions or subsets of the system [39].

In growing systems, these heterogeneities are observed in
the different growth probabilities for different regions. For
example, the DLA has different growth probabilities at the tips
than at the fjords. These sorts of systems have been extensively
simulated [15,40] through hit probabilities. A probability
distribution function can hence be constructed from the
probabilities pi of growth at location i, or from any other nor-
malized measure that sums to one in the whole structure. The
multifractality of the object can hence be described through
the distribution of the above-mentioned intensive measure.

Let us denote by μ(x) the value of a measure μ at position
x. The amount of this measure within a volume V (ε,x) in the
vicinity of x given by ε is defined by [38]

με(x) =
∫

V (ε,x)
μ( y)d y. (1)

Note that on a typical monofractal structure, this measure
is homogeneous, i.e.,

μ(ε) ∼ ε−D, (2)

where D is the fractal dimension.
For multifractal objects the measure μ is different at

different locations, hence the space can be subdivided into
regions around neighborhoods xi , where a distribution for each
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FIG. 2. (Color online) GLA street intersection maps over time. In red we highlight the street intersection maps (SIPPs in the text) for the
urbanized area as defined by the methodology employed in the text.

region can be obtained. If the measure is normalized, such a
distribution can be constructed using Pi(ε) as follows:

Pi(ε) = μ′
ε(xi ) = με(xi )∫

μ( y)d y
. (3)

Given the inhomogeneity of the monofractal, and the infinitely
many singularities of the distribution, for a multifractal Eq. (2)
becomes [41,42]

Pi(ε) ∼ εαi , (4)

where αi corresponds to the strength of the local singularity,
and it is referred to as the Lipshitz-Hölder exponent [43].

This exponent is not unique, as many other boxes or
subdivisions of the space could have the same αi . The number
of boxes with the same αi value is given by [41]

μ(αi,ε) = ε−f (αi ), (5)

where the function f (αi) is the fractal dimension of the set of
subdivisions with singularity strength αi .

To characterize a multifractal system, we therefore need
to fully specify the measures αi and f (αi). In Fig. 3 we
give a simple representation on how the different singularity

measures αi of the boxes of size ε are related to the fractal
dimensions f (αi). Note that if the box has a unique measure,
the fractal dimension for that box will be zero.

Given that we have a distribution function Pi(ε) for the
intensity measures in the ε region of a system, we can
characterize this function via its moments [41]:

Zq(ε) =
∑

i

Pi(ε)q . (6)

FIG. 3. Schematic representation for the distribution of the
α-f (α) pair. Each set of αi has its own dimension. In this hypothetical
example, the dimension A should be the highest, as it covers more
space (four tiles) than the others. In contrast, the dimension C is zero,
as it corresponds to a single point.
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If q = 0, we obtain the number of boxes N (ε) of size ε

needed to cover the system Z0(ε) = N (ε) ∼ ε−D . In addition,
via the exponent q we can select different regions of the
distribution Pi . If q � 0 the regions with the largest values of
Pi will dominate the measure; similarly, if q � 0 the regions
with the lowest values of Pi will be the ones that will dominate
the measure. Given that αi is the scaling exponent of Pi(ε)
with respect to ε,Zq(ε) in Eq. (6) should also obey a scaling
relationship of the type

Zq(ε) =
∑

i

Pi(ε)q ∼ (ε)−τ (q), (7)

where τ (q) corresponds to the mass exponent and can be
defined as

τ (q) = qα(q) − f [α(q)]. (8)

In Appendix B we analyzed the behavior of Zq for some
values of q and confirmed that it decays following a power
law, hence verifying that Eq. (7) holds for our specific case
study.

Equation (8) is usually written in terms of the generalised
fractal dimensions Dq introduced by Ref. [26] as

τ (q) = (q − 1)Dq, (9)

where

Dq = 1

q − 1
lim
ε→0

log10[Zq(ε)]

log10(ε)
. (10)

Equation (10) allows us to recover three well-known di-
mensions [44]: for q = 0,D0 corresponds to the capacity
(box-counting) dimension; for q = 1,D1 corresponds to the
information (Shannon) dimension; and for q = 2,D2 corre-
sponds to the correlation dimension.

If Dq is known, the values for α and for f (α) can be obtained
from Eqs. (8), (9), and (10) as follows:

α(q) = d

dq
[(q − 1)Dq], (11)

q = d

dα
{f [α(q)]}. (12)

Equation (12) indicates that the maximum of f (α) is given by
f [α(0)], while all the other regions in the system have smaller
dimensions. The definition of Dq implies Dq < D, where D

is the fractal dimension of the substrate where our system is
embedded, or simply the Euclidean dimension in this case.

B. Applications to road networks

Each one of the multifractal measures has a spatial meaning
in the context of road networks. That is of particular relevance
in our case, as it allows us to make quantitative comparisons
between the different SIPP studied.

Multifractals systems are characterized by a decreasing
function of the generalized dimension Dq [Eq. (10)], while
for monofractals Dq behaves as a constant function, and the
distribution f (αi) and the measures αi are also constants.

First, let us focus on the three particular dimensions
Dq , corresponding to q ∈ {0,1,2}. Appendix C outlines the
methodology step by step to compute these measures.

1. Capacity (box-counting) dimension: D0

This has been the preferred quantity identified as the
fractal dimension, and it gives the probability of finding an
intersection in an ε box, hence giving a sense of how the city
occupies the space.

A high value for D0, for example 1.9, indicates that almost
all the boxes covering the city contain at least one intersection.
Nevertheless, this measure is completely independent of the
total mass found in each ε box, which means that this
dimension tells us nothing about the intersection density
distribution of the SIPP. For example, two different SIPP could
have approximatively the same D0, while their physical layout
might be completely different.

2. Information dimension: D1

For q = 1, we calculate Eq. (10) when q → 1, and obtain
the following equation:

D1 = lim
ε→0

−�iPi log10Pi

− log10(ε)
, (13)

where the numerator is Shannon’s entropy, which measures the
amount of information related to the density distribution of the
SIPP. Equation (13) is an expression for the unevenness of
the point density distribution in the ε boxes [44]. Higher values
of D1 reflect a more uniform intersection distribution over the
whole city, which in turn could represent either a saturation
of the space or the fact that the city has a regular structure in
terms of SIPP.

3. Correlation dimension: D2

When q = 2, we obtain the correlation dimension D2.
This is a dimension of the correlations between pairs of
intersections, I1 and I2; i.e., it is the probability that I1 and
I2 lie within the same ε box:

D2 = lim
ε→0

log10 �iP
2
i

log10(ε)
. (14)

In this way the correlation dimension gives more accurate
results than the box-counting dimension for spatial objects, as
it explicitly takes into account the spatial structure of the SIPP.
A low value for D2 reflects a spare intersection structure, while
large values for the same quantity represent more compact and
ordered structures.

4. The generalized dimension Dq

For the remnant multifractal dimensions related to other q

values, we have to keep in mind that they are defined via Pi(ε)
[Eq. (3)], which is the probability of finding an intersection in
the ith ε box.

This differs from measuring the multifractal spectra for the
DLA [45], which considers the growth probability on the ε

box. However, the probability of finding an intersection could
be related to the growth probability, given that the areas in the
city with larger Pi have a lower growth probability, and vice
versa. As stated in Sec. II A, q allows us to select different
regions according to their relative Pi values. In this sense, it
can be considered a resolution parameter.
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In terms of the SIPP, positive q values correspond to
multifractal measures for areas with more intersections, while
negative ones correspond to measures for areas with less
intersections.

5. The mass exponent τ

As stated above, for different values of q we obtain different
probabilities of finding an intersection. The mass exponent
τ (q) reflects this through Eq. (7).

A SIPP with a large τ (q) will have more intersections at
the given resolution q than a SIPP with a smaller τ (q).

6. The singularity exponent α(q)

For different values of q, each region of a SIPP displays
a different probability Pi of finding an intersection on it. As
explained in Sec. II, it is possible that different regions share
the same Pi , or at least very similar ones. In such a case, the
singularity exponent α(q) is a measure that captures the variety
of intersection densities in a SIPP at resolution q. A high value
for α(q) means that a high variety of densities at that particular
resolution is found.

7. The multifractal spectrum f [α(q)]

The multifractal spectrum f [α(q)] represents the dimen-
sion f of the set of regions that display similar α(q) values.
While the Dq represents the dimension obtained by examining
the distribution of the intersections over the whole SIPP, the
f [α(q)] is the dimension obtained over the different regions
that display the same α. The plot f [α(q)] versus α(q) gives us a
global picture of the whole structure of the SIPP in terms of the
extension and variety of the different intersection distributions.

III. RESULTS

A. London street network

In order to show that London’s street network evolves
from a multifractal SIPP, to a structure whose multifractal
characteristics are almost lost, we plot and analyze the
correspondent multifractal measures. To do so, we apply
Eqs. (6) to (10) to each one of the nine SIPP obtained from
the historical data set, having considered the constraints on the
range for the q parameter mentioned in Appendix C.

The actual values for q that have been taken into account,
along with the main dimensions and α(0), are shown in Table I.
We can observe a consistent asymmetry between the q+ and
q− values, where the range for the positive values is much
larger than the one encountered for the negative values. This
means that for each SIPP, the number of significant areas with
low probabilities of having an intersection in them, which are
the ones magnified by q− values, is always smaller than the
ones with high probabilities. Such a difference is confirmed
by other measures, and particularly by the multifractal spectra
α(q) − f [α(q)], as we show below.

In Fig. 4(a) we show Dq as a function of q. We can see how
for the oldest SIPPs the Dq values for high q are quite low. This
relates to the fact that the old London street network is scarce
with dense areas. The increasing of Dq for high q during the
years shows us how these dense areas became more important
during the SIPP evolution. The evolution of these areas can be

TABLE I. Main parameters obtained from the multifractal anal-
ysis of each SIPP. The range for the q is not the same for each year
due to restrictions outlined in the Appendix C.

Year q D0 D1 D2 α(0)

1786 [−5.00,14.25] 1.7959 1.7697 1.7467 1.8287
1830 [−7.00,13.25] 1.7926 1.7698 1.7448 1.8187
1880 [−5.75,14.50] 1.8196 1.7950 1.7722 1.8487
1900 [−4.75,19.00] 1.8434 1.8252 1.8109 1.8658
1920 [−4.25,17.75] 1.8602 1.8431 1.8322 1.8824
1940 [−5.25,18.75] 1.8699 1.8619 1.8586 1.8820
1965 [−5.25,16.00] 1.8850 1.8803 1.8780 1.8927
1990 [−4.50,15.00] 1.8851 1.8793 1.8766 1.8948
2010 [−4.50,16.00] 1.8913 1.8858 1.8842 1.9004

tracked looking at the distance of Dq between q+ values from
one year to another. As the gap between two lines is larger,
the morphological difference between structures is also larger.
As an example, for q = 5, the SIPP distribution between 1880
and 1900 is less similar than the one between 1900 and 1920;
the differences for all q values between the last three years is
almost zero, i.e., it is not trivial to distinguish one from the
other in terms of the distribution of its intersections. This is
an evidence of how the London’s SIPP evolved in time toward
a condensation, as we better explain below. The inset plot at
Fig. 4(a) shows the evolution of D0,D1, and D2 in time. The
difference between these values (D0 > D1 > D2) from 1786
to 1920 is a clear signature of the system’s multifractality
during this period. From 1940, the nominal distance between
D1 and D2 begins to decrease, until 2010 when it is practically
zero (0.001), while the distance from D0 and D1 at this same
year is only 0.005. This strongly suggests a decay in the SIPP
multifractal characteristics over the years, almost to the point to
be able to describe the last three SIPPs with a single generalized
dimension, i.e., D2.

The resolution parameter q allows us to track the evolu-
tion of areas with large (q > 0) or small (q < 0) number
of intersections. Consistently, we found that Dq− > Dq+,
meaning that the normalized proportion of areas with less
intersections at each year is always higher than the areas with
more intersections. Such a phenomenology is related to the fact
that within the city there are areas that have been historically
preserved. For example, in Fig. 4(a), from 1880 we can observe
three large void spaces around their centres, corresponding to
Regent’s, Hyde, and Battersea parks (top to bottom), and when
added up, they make a considerable contribution to Dq when
q < 0. The same argument is valid for q > 0 and The City
of London zone (central part from each map in Fig. 4). This
area has been preserved almost with the same high density of
intersections since 1786 to present times.

Although the above argument is true in the sense that
Dq− > Dq+∀q, we need to take into account the nominal
differences in value between Dq . If we pay attention to the
evolution of, for example, D−2 and D−1, it is clear that
their values increase in time (from 1.82 in 1786 to 1.90
in 2010), and that in 2010 they are almost equal to D0

(1.89). So, in practice, what we are observing is how the
SIPP is under a homogenization process, possibly related to
a condensation phenomena, until the point where only areas
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FIG. 4. (Color online) Multifractal analysis for all the years studied. The differences in value between these measures follow a pattern that
imply that a single dimension is enough to characterise the SIPP, or, in other words, the structure is undergoing a transition from a multifractal
to a monofractal structure.

with no intersections are picked up by large q < 0 and that,
in average, the rest of the SIPP has the same density of
intersections at every epsilon box.

The mass exponent τ (q) as a function of q has the
expected monotonic growing behavior, as the SIPP number
of intersections increases year after year. Until q = 3, τ (q) is
practically the same for all years. As the q values increase, the
areas with more intersections are the ones enhanced, and it is
there when the differences between τ (q) values emerge. From
Eq. (8), we know that τ (0) = −Dq,τ (1) = 0 and τ (2) = Dq .
Then, as it has been argued, different values for Dq imply
multifractality. As the nonlinear behavior for τ (q) would, in
turn, imply multifractality, we test the linearity for the τ (q)
for each year, fitting it against a linear function and looking
at the norm of the residuals of such fit. If the norm is equal
to zero, then the function can be characterized as linear. For
the first three years, we have higher norms (all > 1), but as we
move in time, this norm is approaching zero, a situation that
implies lost of multifractaliy during the growth of the London
SIPP.

In Fig. 4(b), we show the function f [α(q)] as a function
of q, for the SIPPs. This function conveys information with
respect to the distribution of the intersections, in the sense that
it relates the different areas enhanced by q with a dimensional
quantity.

We observe that for q−, the curve follows the same behavior
for all the years, indicating that the number of areas with low
probability of having an intersection remains more or less
constant during the years.

On the other hand, we observe significant structural
differences in the SIPP between the different years for q+.

In particular, we observe a change in the concavity of the
curve once we reach 1920, and for the most recent three points
in time, the curves almost overlap at q ≈ 5.

Let us denote by κ the mean curvature of f [α(q)] in a closed
neighborhood of this point. For each year, we obtained the fol-
lowing κ values: 1789:0.73, 1830:0.71, 1880:0.74, 1900:0.57,
1920:0.36, 1940:0.30, 1965:0.22, 1990:0.26, and 2010:0.24.
f [α(q)] has a maximum at q = 0, and for a monofrac-
tal structure f [α(q < 0)] = f [α(0)] = f [α(q > 0)], hence
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κ = 0. For a multifractal structure, we expect to find κ 
= 0.
The plot tells us how the value of κ decreases with the evolution
of the network, reaching a stable low point for the past 50 years.

In Fig. 4(c) we show the behavior of the singularity
exponent α(q) as a function of q. It represents the structure of
the SIPPs in terms of the dominant probabilities at resolution
q. Once again we observe that for q− the structure of the SIPP
is very similar for all years, while for q+ major differences
between the years emerge. For the earlier years, there are only
a few areas with major intersection densities, and so the values
for α(q) are low for q+. On the other hand, for the latest years,
this situation is inverted.

From q = 0, the values for α(q) for the three most recent
SIPPs are very similar, i.e., the distribution of probabilities
is the same for all areas (less/more intersections), while for
the rest of the SIPPs, the differences between these values are
greater, particularly for the first two ones.

Nevertheless, from q = 7, each of the values for the SIPPs
tend to converge to a constant value, indicating that from
this point the different spectra remain constant and hence the
resolution limit for q has been reached.

In Fig. 4(d), we show the multifractal spectrum f [α(q)] as
a function of α(q).

As we already mentioned, each point of the plot shows the
fractal dimension f [α(q)] of the areas with the same singular-
ity strength α, at resolution q. In this sense, it is important to
note that f (α) does not represent the dimension of continuous
regions, which tends to be a common misunderstanding. We
observe that these curves have a maximum for different α(q)
values. These maximum values correspond to D0 at α(0).

It might then become clear that the α(q) values to the left
of the maximum are the ones associated with q > 0, while the
ones to right are the ones associated with q < 0. Keeping in
mind that Dq is a dimension for the whole structure, while
f [α(q)] is the dimension of a subset of such structures, the
clear asymmetry of the curves reflects at some extent the
asymmetry in the distribution between regions with large or
small number of intersections. Then the differences between
the spectra for areas with high density of intersections are
greater than the differences we find for the areas with small
intersection densities.

The fact that the dimension f [α(q)] is greater for the zones
with α values associated with q < 0, which are the areas with
less number of intersections, is not a surprise. For example, for
1786 the f [α(q)] dimension for the areas with larger number
of intersections is very low; while the f [α(q)] dimension for
the areas with less intersections is larger.

If the multifractal spectrum collapses to a single point, it
means that the dimension f [α(q)] becomes the same for all
α(q), i.e., either all the regions in the structure share the same
strength exponent or all the different strength exponents have
the same dimension at all resolutions. In either case, this means
that the structure is a monofractal.

For the case of the SIPPs, it is clear that none of them
collapse in such a way, nevertheless we can observe a transition
from a wide curve in 1786 to a narrow one for the last
two SIPPs. This indicates a progression from multifractal to
monofractal characteristics.

From this multifractal spectrum we can observe that the
diversity of areas with less intersections (right part of the curve)

is lower than the one for areas with more intersections (left part
of the curve). Diversity is understood as the number of points
in each side of the curve. This situation changes with time for
q > 0, while for q < 0 it remains basically the same for all
years. We argue that this is the result of large void areas (usually
related to natural reservoirs and parks), which are very stable
through the years, while the rest of the areas in the city became
more similar to each other in terms of density of intersections,
to the point that they are practically indistinguishable from
each other, as can be verified in the 2010 spectrum, left part,
where the differences in value between each point is of the
order of 0.001 units.

The symmetry of the curve α(q) versus f [α(q)] gives
us information about the relationship between regions with
different distributions. In Fig. 4(e), we show a symmetry
measure for the multifractal spectrum. This is done by plotting
the points {|α(0) − α(q−

i )|,|α(0) − α(q+
j )|} for each year,

where qi and qj stands for the last or first valid q value, and
the 1:1 correspondence line. The distance from these points to
this line is a visual tool to understand the asymmetry of the
relative spectrum.

This symmetric feature represents the balance between
areas with more intersections and areas with less intersections.

The actual distance for each point is: 1789-0.02, 1830-
0.04, 1880-0.04, 1900-0.08, 1920-0.10, 1940-0.14, 1965-0.16,
1990-0.17, and 2010-0.17. It is clear that this distance increases
as we move forward in time. This loss of symmetry, due to the
increasing number of intersections, reflects the undergoing
condensation phenomena in our study area, and once more,
supports our hypothesis on the evolution of London from a
multifractal to a monofractal.

B. Model: Constrained DLA

The multifractal measures show that London’s street net-
work grows while undergoing a process of morphological
restructuring that is manifested in fundamental differences
in the distribution of the structures between different time
periods. The behavior of the network, with respect to the
way it fills the space, follows an expected trend until 1920,
and from this year an anomalous evolution seems to take
place, with D1 and D2 starting to collapse to a single value.
We argue that such a change comes as the result of two
factors: the extensive diffusion of development from the core
of the city to the periphery with massive suburbanization and,
after the mid-1950s, the effect of the actual implementation
of a green belt around London, in order to contain urban
sprawl.

In previous work we showed that the city undergoes a
condensation process in its evolution as the result of the green
belt [34], here we show its effects on the inner structure of the
city for the first time.

In order to test our hypothesis of the evolution of London
from a multifractal to a monofractal structure due to the
presence of the green belt, we introduce a multifractal diffusion
model in a constrained plane, and we explore the effects of
a restricted barrier on a growing multifractal structure. Our
model is based on the classic DLA algorithm [27] modified in
a way that mimics a green belt barrier set at a distance d from
a seed point at (0,0).
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FIG. 5. Evolution of the constrained DLA model.

Given that the DLA structures are formed through a
stochastic process, we perform 100 runs to derive some
average measures, and since the historical data set used in
this investigation consist of nine points in time, we construct
a nine-point time series T for our model. Each point Ti ∈ T

is selected at one particular iteration, representing different
stages of growth.

We define the barrier as a nonpermeable circular perimeter
c, with radius r = 100 and center at (0,0). The model follows
exactly the same rules as in the DLA, until the wandering
particles enter in contact with the green belt. At this stage, the
particles are not allowed to cross the barrier and are forced to
find a new position in the available space inside the barrier.

The effect of the barrier on the DLA model can be observed
from the sixth stage of growth onwards; see Fig. 5.

We then apply Eqs. (6) to (10) to each aggregate in order to
investigate the effects of the growth restriction on the model
with respect to the inherent multifractal characteristics of the
DLA (see Fig. 6). We observe that all the measures related
to multifractality start to collapse toward monofractality after
the sixth point. In the last two stages in Fig. 5, the model
is practically a filled 2D circular plate, with a correlation
dimension D2 = 2.0.

IV. CONCLUSIONS

Several studies have already showed that cities are multi-
fractal objects, instead of fractals structures, as it was originally
suggested. Here we show that for London, this is only true up
to a certain point in time, when the city starts a condensation
process forcing the new street intersections to be allocated
in the available space inside a confined area, i.e., not in a
sprawling fashion. For the three most recent maps examined
in this analysis (1965, 1990, 2010) all our measures are very
similar, reinforcing the idea that a condensation process is in
place and that it is reaching a stable phase. This implies that
αi in Eq. (11) is equal ∀ q, i.e., the probability of finding an
intersection at any random area in the SIPP is the same.

We observed that such a multifractal to monofractal
transition is not particularly smooth, in the sense that the
differences in values get dramatically shortened from 1940 and
1965, which is the period when the green belt was established
de facto.

After 30 years of the introduction of the green belt,
the structure lost part of its multifractal signature, while
after 60 years we can practically characterize the city as a
monofractal structure.
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FIG. 6. (Color online) (a) q-Dq plot. Until point 6, when the
structure begins to interact with the green belt, all the points for
both models depicts the same similar behavior. From point 7 the
effect of the barrier over the structure is clear. (b) α(q) vs. f [α(q)]
plot. The spectrum at points 8 and 9 are almost completely collapsed
to a single point, which is an indicator of a monofractal structure.

In order to investigate the impact of such a natural barrier
on the internal morphology of the city, we performed a
simulated experiment. We imposed a nonpermeable barrier
on a well-known multifractal diffusion process (DLA) and
measured the evolution of its multifractal properties as
the structure grew and began to approach the barrier. We
obtained a clear transition from multifractal to monofractal
behavior in the two final stages of the growth process of our
structure.

This is in very good correspondence with the observed
behavior for London.

The results presented here are hence another step toward the
understanding of the implications of restricted urban growth
policies in the urban morphology of modern cities.
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APPENDIX A: FRACTALS REVIEW

Monofractal objects are characterized by invariance under
a change of length scale [8,46]. When the change is performed
in an isotropic way, the fractal is called self-similar. If
on the other hand the length scale is changed in different
directions through different factors, the fractal is called
self-affine.

The scaling exponent of the power-law relationship be-
tween the size of an object, e.g., its mass M , and the observable
being measured, e.g., the length L, is in general identified as
the fractal dimension D [47]:

M ∼ LD. (A1)

In this sense, as the fractal grows, its density ρ measured in
the Euclidean space d decreases:

ρ(L) ∼ L−α; α = d − D. (A2)

It is important to note that this fractal dimension is not always
unique. Different ways to characterize the system, and to
measure scale-invariance with respect to different properties,
might lead to different exponents. For example, if a metric
is defined in the space, one can find the scaling relationship
between the number of units needed to cover the space as the
fractal object is resized. If those units are balls, the exponent in
this case corresponds to the Hausdorff-Besicovitch dimension
DH [48,49]. This reduces to a problem of optimization of the
number of balls needed to cover the space. In the case of simple
self-affine fractals, the different fractal dimensions converge
to a single value, and the fractal can be fully characterized by
a single dimension, D = DH . Nevertheless, this is seldom the
case for fractals encountered in nature.

a. Random fractals

Fractals are classified in terms of deterministic and random
fractals [50]. Deterministic fractals correspond to mathemat-
ically constructed objects whose scale invariance holds for
all scales. Examples of these are the well-known Sierpinski
gasket and the Koch curve. In experiments and in nature only
random fractals are observed. These are finite objects that can
be characterized as fractals within a specific regime of length
scales. We denote by a the smallest linear size that can be
measured and by Lm the largest size, which might correspond
to the size of the box where the finite fractal can be embedded
in a Euclidean d-dimensional space [47]. For random fractals
Eq. (A2) becomes

ρ(λ) ∼ λ−α; λ = Lm

a
. (A3)

In general, the linear size L should be replaced by L/a. At this
point it is very important to note that random fractals exhibit
self-affinity or self-similarity symmetries at a statistical level
only. This means that the correct way to measure the scaling
exponent is through a large number of samples. The density
ceases to be global, and one needs to take into account the
average over all origins, and for nonisotropic fractals, over all
orientations and ensemble realizations. The density is hence
replaced by a density-density correlation function,

c(r) = 1

V

∑
r ′

ρ(r + r ′)ρ(r ′), (A4)

which can be seen as the probability of finding a particle
at r + r ′ if there is already one at r ′, and where the
volume V can be considered in terms of the total number of
particles. For isotropic fractals, the density-density correlation
function corresponds to the density distribution around r , since
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c(r) = c(r ′). This is scale-invariant,

c(ηr) ∼ η−αc(r), (A5)

where η denotes the rescaling factor and can also be expressed
as

c(r) ∼ r−α. (A6)

For growing systems whose mass can be characterized by the
number of points (or particles), the fractal dimension can be
obtained by looking at the scaling relationship between the
number of points M(R) within a sphere of radius R [51]:

M(R) ∼
∫ R

0
c(r)ddr ∼ Rd−α; D = d − α. (A7)

Note that this equation only holds at the asymptotic limit,
i.e., Lm and R � a. In addition, this radius can be seen as
the radius of gyration, and the system can be considered
as a growing system as presented above or as a system that
contains several fractals of different sizes that are the outcome
of the same process. For this latter case, the average needs to
be considered, and in order to reduce statistical fluctuations,
a large number of samples is required. In a different paper we
will investigate this scenario, considering cities in a country
as the different realizations of the same process. The observed
fluctuations are the result of the statistical nature of the
self-similarity of these systems.

Obtaining a good estimate for the fractal dimension is not an
easy task [52]. For small scales of L, corrections to the above
given equations need to be introduced. In addition, further
inaccuracies arise from the limitations of the sample size and
the orders of magnitude involved in the distribution of fractals
from which D is estimated.

One solution is to verify that all such fractals involved
in the computation of D are self-similar. This is done by
collapsing all the curves for the different fractals to a single

one using the equation for self-similarity Eq. (A5) and by
taking the characteristic length of the system as the scaling
factor,

η = 1

R
∼ M−1/D, (A8)

leading to

c(r/R) ∼
(

1

R

)−α

c(r), (A9)

c(r) ∼ R−αf (r/R), (A10)

∼ M (D−d)/Df (r/M1/D). (A11)

APPENDIX B: Zq BEHAVIOR

According to Eq. (6), the sum of the probabilities of finding
an intersection at all boxes i of size ε, with resolution parameter
q, decays following a power law that depends on the mass
exponent τ . To probe this statement for the London’s street
network partitions, we selected integer values for q ∈ {0,10}
for years 1786, 1920, 1965, and 2010. The trivial case is
q = 1, where τ (0) = 0 so Z0 = 1∀q. For the rest of the q

values explored, we performed a linear regression over the
plot log10(Zq) versus log10(ε) (Fig. 7). First, we obtained a
good fit for all four cases, with a minimal square error from
0.14 for q = 0 to 0.003 for q = 10 and a R2 around 0.9 for all
q. As the street networks evolves from a multifractal structure
to a monofractal one, the number of distinguishing Zq values
decreases. For 1786, we have 11 defined values while for 2010
we only obtained 7, meaning that Zq is collapsing to a single
value, which would be the same for all q.

It is worth noting that for q < 0 these fits are less
accurate than for its positive counterparts. As discussed in
Ref. [38] the Lagrange method diverges very quickly for

FIG. 7. Zq behavior for integer q values ∈ {0,10}. Each plot shows the ε − Zq for four particular years. We can observe how as the street
network is consolidating, the larger Zq are collapsing into a single value. For (a) 1786 we have 11 distinguishable values, for (b) 1920 we have
10, for (c) 1965 we have 9, and for (d) 2010 we have only 7. For each q, the linear regression confirms that Zq decays following a power law
regardless of the year selected.
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negative q values and this situation is reflected in the partition
function.

APPENDIX C: PRACTICAL CALCULATION
OF THE MULTIFRACTAL MEASURES

The formalism introduced in Sec. II presents some practical
disadvantages. The two most important ones are: (1) the
smoothing of the curve Dq , and (2) the numerical calculations
of the derivative in Eqs. (11) and (12). To overcome these
difficulties, we apply the method described in Ref. [53] to
obtain the parameters Dq, τ (q), α(q), and f [α(q)].

We proceed as follows:
(1) Calculate the number of nonempty boxes of size

ε,N (ε), necessary to cover the SIPP.
(2) Calculate the number of intersections at the box i of

size ε, μ(i,ε), which is the discrete version of Eq. (1).
(3) Calculate P (i,ε) given in Eq. (3).
(4) Calculate the partition function of Eq. (6):

Z(q,i,ε) =
N(ε)∑
i=1

P (i,ε)q . (C1)

(5) Apply the normalized measure μ(q):

μ(q,i,ε) = P (i,ε)q

Z(q,i,ε)
. (C2)

(6) Obtain by linear regression, α(q,ε), f (q,α,ε), and
τ (q,ε):

α(q,ε) = �
N(ε)
i=1 μ(q,i,ε) ln[P (i,ε)], (C3)

f (q,α,ε) = �
N(ε)
i=1 μ(q,i,ε) ln[μ(q,i,ε)], (C4)

τ (q,ε) = �
N(ε)
i=1 P (i,ε)q−1. (C5)

(7) Finally, calculate Dq according to

D(q,ε) = τ (q,ε)

q − 1
. (C6)

In practice, q does not take values in the entire range
(−∞,∞), due, first, to the obvious computational limitations,
second, to the inherent statistical errors associated with the
linear regressions, and third, to the specific dimensionality
constraints of our SIPP. The topological representation of these
networks is a two-dimensional point set and Eq. (12) implies
that f [α(q)] � D, where D is the dimension of the substrate
on which the measure is distributed (in our case D = 2). But
Eq. (10) can indeed generate values Dq � D and f [α(q)] � D

for q < 0. In this research, initially we selected q in the discrete
interval [−20,20] with a 0.25 step separation between each
value, and the actual valid range is selected in two steps:

(1) All the q values where Dq and f [α(q)] are greater than
2 are dismissed for the further analysis.

(2) For the values obtained through a regression, we
selected the ones such that R2 > 0.9.
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