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Abstract. This paper seeks to extend the macrostatic approach to urban modelling by treating 
modelling problems as many-stage processes. Within such a process the early stages are concerned 
with explaining the relatively trivial characteristics of the phenomena of interest, and the later stages 
are devoted to explaining more important behavioural issues. Coleman (1964) calls this approach 
the 'method of residues', and its power is first demonstrated here by a reinterpretation of the 
well-known gravity model. An ad hoc test of the method on the Toronto-centred region serves to 
emphasise the need for a more formal approach, and thus an analogy between the method and the 
Bayesian viewpoint is introduced. A method of information minimising, more general but 
consistently and unambiguously related to the method of entropy maximising, is used to make the 
formal approach operational, and the method is used to generate an 'extended' family of spatial-
interaction models. A number of spatial-interaction models are derived, and the paper is concluded 
by a test of two of these models on the Toronto-centred region. 

1 Introduction 
In the effort to design manageable models of cities and regions that are capable of 
use in a policymaking context, the most successful approach so far has undoubtedly 
been framed in terms of macroanalysis. Most urban models have been built at a 
highly aggregate level, in which the simplest form of urban structure has been 
described statistically in static terms. The appeal of this approach is easy to 
comprehend for the requirements of simplicity and practical applicability, combined 
with the somewhat primitive level of available urban theory, have made the 
macrostatic approach the only one feasible (Batty, 1976). Yet in its wake there has 
come the call for extensions to this approach, particularly through the treatment of 
system behaviour through time (dynamics), and through the description of more 
disaggregate structure (Wilson, 1974). Progress has, however, been slow. Despite the 
evident need for such improvements, more microdynamic modelling has been 
inhibited by the perennial data problem, by statistical significance problems and, 
more importantly, by problems of formulating hypotheses capable of being 
disentangled from the myriad of factors affecting urban systems and capable of 
being tested accordingly. 

This recognisable pressure towards more microdynamic modelling may well contain 
the seeds of its own destruction, at least in the short term. The early history of 
urban modelling in the United States was beset by problems originating from efforts 
to model disaggregate systems, and the prospect for such models, especially in a 
practical context, is still not good (Lee, 1973). However, there are other possibilities 
for improving urban models which retain a macrostatic emphasis and, although these 
approaches are less easy to engender, one such approach will be advanced in this 
paper. The basis of this approach rests on the idea that, within any theory of urban 
structure, there are sets of ideas which are more appealing and more relevant than 
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others. In one sense, it is possible to view any theory as composed of a number of 
distinct parts which could be ordered according to their sophistication, relevance, and 
certainty, or testability. For example, current urban economic theories seem to 
contain much stronger insights about residential location than about industrial or 
service location, although they attempt to explain both. The method to be outlined 
here is based on the premise that theories can be so ordered and that different types 
of models must be used to describe different parts of the theory. In another sense, 
this approach is one in which a hypothesis or theory is modelled sequentially in 
stages, each stage building on the previous one. 

The simplest form for this approach involves a two-stage process of model building, 
and in statistical applications this process has been known for many years. A typical 
example might involve a linear model of some phenomenon calibrated by a technique 
such as least squares, and embodying some ideas about the causal structure of the 
system through its independent variables. This would constitute the first stage, and a 
second stage is often suggested in which a further explanation of the phenomenon is 
attempted by examining the residuals, and building another model to explain this 
variation. The approach just described is plagued by problems involving the 
separability of the phenomena into these stages, and in the past the second stage has 
been rarely attempted and has never been treated as a matter of course. Yet the idea 
seems to have some merit, especially if a convincing means for distinguishing the 
various stages is devised. In fact one of the starting points of this paper involves such 
a distinction; Coleman (1964), in his book on mathematical sociology, presents a 
profound example of the method which he terms the 'method of residues'. He 
demonstrates how a trivial aspect of spatial variation must be factored out from data 
in the first stage, and in the second stage the residues become the all-important 
phenomena to be explained. There is a subtle change in emphasis here, one which 
will be developed in the argument of this paper, for it will be demonstrated that a 
possible approach to urban modelling can be devised in which the initial stages involve 
modelling the more trivial characteristics and the later stages the more important ones. 

Although the development of the method of residues will comprise the core of this 
paper, it is not proposed to develop a formal framework for applying the method at 
the start, for there are a number of problems to be explored first. Thus the thesis of 
this paper will be organised in such a way that the initial applications of the method 
to location in the Toronto-centred region lead naturally to problems which can be 
resolved by a more formal approach. The method will be described first, and its 
application in understanding the form of the well-known gravity model of spatial 
interaction will be presented. In fact the method leads to some new insights into the 
form of this model, and some long-standing problems, if not resolved, are at least 
reinterpreted. The basic method is applied in an ad hoc fashion to the Toronto-centred 
region, and on the basis of these applications a new framework is defined. 

From these rather ad hoc attempts at making the method operational it is clear 
that a more consistent approach is required, and thus the new framework attempts to 
see the two-stage approach to modelling as one in which prior and posterior 
probability models are derived. In particular, a Bayesian approach to the method of 
residues is implied, and a formal technique for deriving single models incorporating 
both stages is presented. The technique is based on information theory and is one of 
information minimising, which is intrinsically related to the well-known technique of 
entropy maximising. A demonstration of the technique in terms of the gravity models 
introduced earlier is given, and in particular the family of spatial-interaction models 
due to Wilson (1971) is extended. These new models are then applied to the 
Toronto-centred region and comparisons are drawn between the ad hoc and formal 
approaches. 
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Like any departure from existing practice this new approach is speculative and 
tentative; the style chosen for presenting the approach involves a mixture of simple 
theory and empirical application. The basis of the ideas contained in this paper is 
very simple, and thus they are presented in as elementary a way as is possible. An 
essential feature of this approach is to contrast theory against application so that 
both can draw from each other. And in this context the interposing of theory and 
application is all the more necessary and important owing to the somewhat speculative 
nature of the argument. But before the method is applied to locational modelling, it 
is worthwhile to consider its logic in more detail for this will serve to delimit the 
scope of the proposed approach. 

2 The method of residues 
2.1 Theory and explanation as a many-stage process 
It is generally accepted by the scientific community that theory is improved 
sequentially and marginally, and that this is equivalent to the theory passing through 
a sequence of stages which reflect different identifiable problems facing the field. 
This is the process which Kuhn (1962) characterises as 'normal science', and the 
process of theory-building is usually achieved by "conjecture and refutation", using 
Popper's (1965) phrase. Moreover, in the eyes of later observers certain well-established 
theories, or parts of a theory, might appear trivial, yet it is a feature of all knowledge 
that when an idea is absorbed it seems obvious. Yet seldom are theories themselves 
divided into distinct parts or stages which build on each other, and although this 
might seem odd, given the history of theory-building as one of successive improvement, 
it is easily explained. In science there is a widespread reticence against coupling 
distinct theories or ideas together, for this is likely to lead to inconsistencies and 
unforeseen repercussions. Such lack of consistency, however practical a coupling of 
theories might appear, is against the grain of science—for it has none of the conceptual 
and theoretical elegance which characterises great theory. In physical science, 
however, the desire for elegance has generally been met, for there is a major force 
towards ironing out inconsistencies and deriving universals through research. 

But in the social sciences the situation is quite different. The social world 
cannot be interpreted in the same way as the physical world, and the nature of social 
systems, and the intrinsic difficulty in explaining their form forces the researcher into 
more expedient ways. Furthermore the requirement for practical methods to solve 
problems now also focuses the field on more ad hoc and pragmatic approaches, and 
inconsistency within and between theory is the norm. In the field of urban modelling, 
examples of coupling theories together or breaking models into distinct stages are 
plentiful. For example, the CONSAD model built for the Pittsburgh Community 
Renewal Program (Steger, 1965) was composed of three submodels—input-output, 
industrial location, and residential-service location—which were strung together in a 
simple linear sequence. Even in theoretical developments of urban models, researchers 
have been forced to couple together existing techniques. Wilson's (1974) general 
model is conceived in this way, and inevitably there have been major criticisms of 
such approaches owing to the potential propagation of errors (Alonso, 1968). 

In the introduction another reason, apart from expediency, was implied in support 
of urban modelling as a many-stage process. Because of the nature of urban systems, 
different parts of any theory have different degrees of strength and significance, and 
thus it is quite logical to treat these different parts accordingly. And there is one 
particular case where to treat an urban model in any other way would be quite 
foolish, and this is the case where the urban model contains characteristics which are 
trivial in terms of their explanation. If a model contains such characteristics, then 
these can come to dominate the model, and this criticism has been frequently levelled 
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against several major applications. If trivialities are identifiable the logical approach 
would be to filter out these characteristics in the early stages of modelling, in 
preparation for the true 'explanation' achieved in later stages, using a process 
analogous to a communication engineer's attempt to filter out noise, or a statistician's 
attempt to define periodicity in time series. This problem is not an easy one to 
evaluate, but in urban modelling it is immensely significant, as can be seen from the 
debate over spatial correlation and boundary effects (Curry, 1972; Cliff et al., 1974), 
which plagues the field of spatial analysis with nontrivial effects from trivial causes. 

Coleman (1964) sums up the problem quite cogently when he states, "in considering 
a given complex social phenomenon, certain aspects of it are explainable by 
'sociologically trivial' assumptions, or by matter irrelevant to the substantive matters 
under investigation. If we examine what part of the behavior can be explained by 
these 'trivial' factors, then the remainder stands out to be explained by less trivial 
factors". Coleman calls the method, which he goes on to develop, the 'method of 
residues', and he demonstrates how the method can be used sequentially and 
hierarchically to filter out and explain various characteristics of a problem. Coleman 
refers to such trivial characteristics as 'null hypotheses' which form some starting 
point or baseline on which to begin the explanation. In this paper, a proposal for 
applying a two-stage method of residues to urban modelling is elaborated and applied 
both in pragmatic and in formalised ways. The particular model which is used in an 
urban context is the gravity model; this example demonstrates that the general 
approach implied by the method of residues does not only lead to a better statistical 
explanation but it also leads to a more satisfying theoretical explanation, and this fact 
reinforces the argument that this method has much more than superficial value. 

2.2 Gravity: the physics of space 
Almost from the late 1940s, when models of spatial interaction were first formulated 
explicitly, there has been a debate about whether or not such models have a 
behavioural significance and whether or not such models simply reflect the way in 
which boundaries are drawn and space is partitioned. In recent years this problem 
has been considered by Curry (1972), who suggests that the form of the map over 
which spatial interaction takes place is an all-important determinant of the pattern of 
interaction. In other words it is space itself rather than any behavioural structure 
which works the model, and thus the performance of the model is an obvious 
consequence of the physics of the space. The uncertainties surrounding the argument 
have perhaps inhibited its full development, for there are few clear statements of the 
problem, and little formal analysis of the effect of space. 

Yet there is a simple and cogent way of deriving a model which describes spatial 
interaction and which requires only minimal assumptions. Consider the probability 
of interaction pti between two points i and / separated by some distance d. Then the 
total interaction between / and / must be proportional to all possible pairwise 
connections, 0Z-, generated by the persons living at i and, 07-, by those at /. Thus p,y. is 
directly proportional to the product 0,-0/. If we assume equal population densities 
and also that a person is equally likely to travel distance d miles as d + A miles (in the 
absence of knowledge to the contrary), it can be shown that the probability p# varies 
in inverse proportion to distance. Consider two destinations, j \ and /2 , such that the 
distances take the following order, 

dih = d < d + A = diJ2 . 

Now the destination j \ can be located anywhere on the circumference of a circle of 
length 2ird, whereas destination j2 can be anywhere on the circle of length 27r(<2 + A). 
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With equal population densities, there are (d + A)/d = 1+A/d as many persons on the 
more distant circle, and thus the probability of interaction to all points on the nearer 
circle is higher by this factor. This in turn implies that the probability of interaction 
from a fixed origin to any destination declines proportionately with distance from 
that origin. Stated formally, these conditions can be combined to give 

* • *£ • <» 
The model in equation (1) is an example of what Coleman (1964) refers to as a null 
hypothesis', it is the expected pattern of interaction, given no assumptions about the 
behaviour of the population apart from the assumption of travel indifference to 
distance. The similarity to the well-known gravity model is striking, but this is more 
a consequence of the physics of the situation than any behavioural postulates. In 
fact this model was originally derived by Zipf (1949) who used an argument similar 
to that above. However, Zipf never expounded his argument in detail, and in his 
work he simply states that equation (1) is a direct consequence of the law of precise 
geometrical probability. Zipf's work was swamped by the alternative derivations of 
similar models, particularly those by Stewart (1942; 1947), and the essential logic of 
Zipf s ideas appears to have been forgotten by succeeding generations of model 
builders. But, in this paper, equation (1) takes on a new significance because it 
becomes a central model in applications of the method of residues and, more 
important, in a reinterpretation of spatial-interaction models. 

In contrast to Zipfs (1949) work, most early researchers who adopted the gravity 
model did so by using the analogy with the Law of three-dimensional Gravitation, 
which is a direct consequence of Newton's Second Law of Motion. The equation 
describing the gravitational force between two bodies i and /, with masses Mt and ir
respectively, is given by 

Fa = G-&- , (2) 

where 
F;j is the force between i and /, and 
G is the gravitational constant. 
Some researchers, for example Reilly (1931), have used equation (2) directly for 
estimating spatial interaction, but an alternative analogy was used by Stewart (1942). 
Stewart, in a series of articles, argued that the correct relationship for interaction 
phenomena was not one of force but one of energy. The equation for gravitational 
potential energy is defined in Newtonian mechanics as being proportional to the 
integral of equation (2), and this is given by 

v -r^M m 
Viex)ij - <* j yJ) 

uij 
where 
V(ex)tj is the potential energy interchange between mass i and mass /. 
Stewart then went on to define potential energy at a point or origin i by summing 
equation (3) over i and rearranging, thus 

4- Mex)i; 7L/. 

where 
Vt is the potential energy at /. 
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Stewart maintained that equation (4) was the correct one for describing demographic 
potential, with population density replacing Mt, and the constant G fixing the 
appropriate potential scale. 

There are several comments to be made on these arguments. The seeming 
correspondence between Zipfs derivation [equation (1)] and Stewart's analogy 
[equation (3)] is ambiguous, to say the least. In the endless debate about whether or 
not distance should be raised to the second power, or whether or not the power 
should be a parameter to be estimated, Stewart and Warntz (1958) maintained that 
equation (3) is not inconsistent with equation (2) since both have their derivation 
from Newtonian mechanics. But equations (1) and (2) do appear inconsistent, for 
one is derived from two-dimensional probability considerations and the other from 
three-dimensional gravitational considerations. In fact, very few researchers appear to 
have picked up this point—that two-dimensional gravitational models are likely to be 
much more suitable than three-dimensional models for social systems of interest. 
From the literature of that time Stewart and Zipf make substantial reference to each 
other's work, but they do not really emphasise any of their differences, and there 
were several. In fact, because of the similarity of equations (1) and (2), and because 
these similar equations were both tested empirically by each author, results were 
quite consistent with the use of either equation regardless of how it was derived. But 
it does seem that Zipf was aware of the differences between the ways in which these 
equations were postulated. Yet he was able to rationalise the problem by arguing 
that his 'null hypothesis' contained only one of several effects which account for 
variations from equation (1). In this way he was able to accept the need for variation 
in the exponent on distance much more readily than Stewart, and his work is quite 
consistent with Coleman's (1964) method of residues, from which it seems to have 
been derived. In fact Zipf distinguished between two effects of distance: the first, 
an effect concerning the increasing cost or effort of overcoming distance, and the 
second, the declining opportunity for contact per unit area at decreasing distance. 
And he explicitly made tests of the second effect (the null hypothesis), leaving the 
first effect to be explained by other methods. 

The null hypothesis contained in equation (1) is so appealing that an ad hoc test of 
the model as a first stage in the method of residues, and a second-stage explanation 
of the residuals, is attempted below. But, as a baseline to this work, an elementary 
residential-location model of the kind derived by Wilson (1969) will also be applied 
and used to engender comparisons. The applications throughout this paper are based 
on data taken from the Toronto-centred region which includes the cities of Hamilton, 
Toronto, and Oshawa, and stretches some sixty miles along the northern shore of 
Lake Ontario. 

3 Ad hoc applications of the method: examples in the Toronto-centred region 
3.1 The singly-constrained residential-location model 
The first model to be applied here—the baseline model—is perhaps the best known 
and most widely used of all gravity models at the present time. It exists in various 
forms: in traffic-distribution modelling due to Voorhees (1955); in retail-location 
studies due to Casey (1955), Huff (1964), Schneider (1959), Harris (1964), and 
Lakshmanan and Hansen (1965); and in residential modelling due to Wilson (1969) 
The model is of particular significance, for although it is difficult to derive behaviourally 
it is widely believed that the model 'captures' actual behaviour. Thus a comparison 
of this model with the null hypothesis is likely to be revealing. 

The model can be stated in probability terms as follows: 

Pif = KjOiDj-expi-Xdij) , (5) 
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where 
Py is the probability of interaction between origin / and destination /, 
Ot and Dj are the amounts of activity in origin i and destination / respectively, 
X is a parameter controlling the influence of distance dtj, and 
Kt is a balancing factor defined below. 
X is a parameter to be estimated by some numerical-statistical procedure and is 
approximately inversely related to the total distance travelled in the system. The 
model is subject to a constraint on the origins, which is written 

LPif = Y ' ( 6 ) 

where T is the total activity in the region. This is defined as 

ZQ = T Z A =T. (7) 

Note that 7 is an arbitrary scaling constant and, without loss of generality, can be 
assumed to be equal to unity. Summing equation (6) over i and substituting from 
equation (7), it is clear that 

Z IPij = V = l - w 

The constant Kt can be evaluated by summing equation (5) over / and rearranging by 
use of equation (6). Then 

Kt = [ r ^ Z ^ e x p e X ^ ) ] ' , (9) 

and the interaction model can now be written out explicitly in terms of the trips, 
called Ttj, made between i and /, thus 

Ttj = TPij= Ot^r1- ' . (10) 

/ 
Of particular interest in such a model is the number of trips attracted to any 
particular destination zone /, which can be regarded as an estimate of the location of 
activity in 7. This prediction, called Df, is calculated by summing equation (10) over/, 
thus 

D?= 1T„= TY.Pij • ( ID 
i i 

In the context of the residential-location model to be applied here, Ot is an estimate 
of the persons working in z, and Dj is a measure of the attraction of the residential 
zone 7. Thus Df is the predicted number of workers who live at 7. 

The model given in equations (10) and (11) has been calibrated to the Toronto-
centred region shown in figure 1. The origin and destination distributions {#/} and 
{Df} are equivalent to the distribution of employment {Et} and the scaled distribution 
of population {Pj(E/P)}, where E and P are total employment and total population in 
the system respectively. The data is taken from the 1971 National Census, and a 
zoning system based on a neutral square grid has been adopted for the modelling 
work. Figure 1 shows the urbanised area and main transportation routes, and the 
isometric solids for employment and scaled population reveal that the region has the 
characteristic spatial form of most Western cities. The employment density is sharply 
peaked, in downtown Toronto and north and west of the city, in contrast to the 
population density which is much less peaked but nevertheless declines quite regularly 
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with increasing distance from downtown Toronto. The region had a population of 
some three million people in 1971, and these characteristics make it highly suited to 
the application pursued here. 

The model was calibrated by finding a value for X which reproduced the mean 
travel distance generated in the region; that is, X was chosen so that 

k l ? X = I I t f / O ^ e x p e X r f y ) ^ . , (12) 
1 i J i J 

which several authors (Hyman, 1969; Evans, 1971; and Kirby, 1974) have shown to 
be the maximum-likelihood estimate for X. Equation (12) was solved by using the 
Newton-Raphson method (Batty, 1976), and four iterations of the method were 
required. In terms of the measures of fit used, the performance of this model is fair, 
and the statistics summarising this fit are shown in table 1. Figure 2 gives a graphical 
demonstration of the fit in terms of four isometric plots. The first two show the 
observed and predicted distributions {jD;

pbs} and {£>/}, whereas the second two are 
plots of the residuals. First, the actual residuals, Rj, defined as 

Rj = D;-Dj>hs , (13) 

Distribution of employment {0,} Distribution of population {D}} 
Figure 1. Spatial form of the Toronto-centred region. 

Table 1. Performance of the singly-constrained baseline model. 

Observed mean travel distance 6-1000 
Predicted mean travel distance 6*0997 
Parameter, X 0-2230 
Correlation r of {D?h*} and {£/} 0-9757 
Coefficient of determination, r2 0-9521 
Intercept of regression of predictions on observations 1784-8750 
Slope of regression 0-8382 
Sum of the absolute deviations between predictions and observations 295377 
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and then, the percentage residuals, r;-, defined as 

D; 
(14) 

are plotted. The percentage residuals are perhaps the most important in evaluating 
whether or not any systematic pattern in the residuals is present and, from figure 2, 
it appears that the model underestimates population in the actual downtown zones 
and on the periphery of the region—at Hamilton and Oshawa. This might be 
corrected by finding a better distance function which gives greater estimates at the 
origin than the negative exponential function. However, the real interest here is in 
assessing how much of the explanation accounted for by this residential model can be 
accounted for by the null hypothesis, and this constitutes the next application. 

Predicted {Df} 

Absolute residuals {R}-} Percentage residuals {ry} 

Figure 2. Spatial predictions and residuals from the singly-constrained model. 

3.2 The Coleman-Zipf model: a null hypothesis 
The model based on equation (1) can be rewritten using the notation and definitions 
given in the previous section. The model then becomes 

pif = KOiDjdjj1 , (15) 

where Ot and Dj have replaced 0/ and 0;- respectively, and K is a scaling constant 
which is introduced to ensure that 

X X P * = 1 . (16) 

K can easily be evaluated in the usual manner by summing equation (15) over i and /, 
and rearranging. Then 

K=[ZZ°iDidV) > (17) 
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and the explicit trip model is thus given as 

Tij = TPij = T 
II4-A-471 ' 

(18) 

The model in equation (18) is a particular case in the class of unconstrained spatial-
interaction models defined by Cordey-Hayes and Wilson (1971); in this model, we 
can estimate not only the trips attracted to a destination / but also the trips produced 
in an origin /. First, the trips produced in i, which are related to activity located at z, 
in this case employment, are calculated as 

J j 

oc OtVfV . (19) 

The interpretation of equation (19) is interesting in the light of the earlier use of 
potential by Stewart (1942), and it is clear that the estimated activity in origin /, 
predicted by the model, is proportional to the actual measure weighted by its 
potential. The same interpretation can be made for the activity located at the 
destination /, which is calculated as 

ex DfVfi2) . (20) 

Of further interest is the relationship between this model and Hansen's original 
accessibility-potential model (Hansen, 1959), but this will not be explored further here. 

The model defined by equations (18) and (20), which embodies the null hypothesis, 
has been applied directly, and its performance is presented in table 2. In figure 3, a 
visual presentation of the origin and destination estimates and their residuals is also 
made, and it is clear from these results that the model performs quite well. What is 
remarkable from a theoretical perspective is the huge amount of variation that is 

Observed {Df} Predicted {£>/} 

Absolute residuals {Rf} Percentage residuals {/-,} 
Figure 3. Spatial predictions and residuals from the Coleman-Zipf model. 
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accounted for by this null hypothesis: 84% of the origin activity and 93% of the 
destination activity are accounted for by the model; yet, this is not so remarkable if 
the forms of the singly-constrained baseline and the Coleman-Zipf models are 
compared directly. The models are similar in several senses, hence the equally 
creditable performance of the Coleman-Zipf model against the baseline is explicable. 
What is quite intriguing, however, is the fact that a large proportion of the variance in 
these spatial activities can be accounted for by a model based on minimal assumptions, 
and this leads one to consider additional assumptions which have more potential 
explanatory power. Some may immediately object that these models are tautological 
in that some variables concerning the origin and destination activity, 0,- and Dj, are 
used to predict the same variables Of and Df. The argument is recurrent throughout 
the use of gravity models as location models, and it is not proposed to detail the 
arguments again here; but interested readers are referred to Batty (1976), Wilson 
(1970), and Echenique et al. (1969) for various viewpoints. For those who remain 
sceptical, note that the predicted trip distribution against the observed trip distributions 
give a performance similar to the performance of the marginal totals of these 
distributions compared here. 

Table 2. Performance of the Coleman-Zipf model. 

Correlation r of predicted 
and observed activities 

Coefficient of determination r2 

Intercept of regression of 
predictions on observations 

Slope of regression 

Sum of the absolute deviations 
between predictions and 
observations 

Origin activity 

{on 

0-9171 

0-8410 

-839-5391 

1-0754 

368921 

Destination activity 

{on 

0-9653 

0-9318 

1534-8516 

0-8604 

293325 

Predicted mean travel distance for the system = 6-1684 

3.3 Models of residues 
The method of residues is based on the idea that once the relatively straightforward 
characteristics, such as those reflected in the Coleman-Zipf model, have been filtered 
from the data, then the task to explain the resulting data begins in earnest. In this 
context the filtering out of these characteristics has already been achieved by the 
application of the model in the previous section, and the actual residuals provide the 
new set of observations on which the second stage of modelling is based. This 
division of the process into two stages is based on nothing more than common sense, 
for no effort has yet been made to model both stages as one; in fact, this commonsense 
approach is a pragmatic one, hence the term ad hoc applications. 

The search for pattern or order in the residuals can embody a variety of approaches: 
the search could proceed inductively by using factor analysis, it could proceed by 
using an elementary theory of linear additive causality, or it could proceed by using 
stronger deductive theory, thus giving rise to integrated nonlinear models such as 
those used in spatial interaction. The variables used in the first stage can be used 
again if it is felt that certain effects related to these variables have not yet been 
captured, or they might be excluded on grounds of duplication; whatever the mix of 
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variables adopted, their ultimate significance will depend upon the plausibility and 
strength of the theory postulated to explain the second stage and, perhaps more 
importantly, on the relationships between the first- and second-stage theories. In this 
example, two models of the residues will be advanced; the first is a linear model 
which contains a variety of variables whose inclusion depends upon their performance, 
and the second is a spatial-interaction model of the kind given in equation (10), 
which includes a hypothesis concerning the additional effect of distance on the 
spatial form of the system. 

The linear model used to explain the pattern of residuals, Rj, has been applied 
both to the origin and the destination residuals that are computed from the predicted 
origin and destination activities given in equations (19) and (20). The model has the 
general form 

Rf= l^Xfl, / = 1 ,2 , . . . ,Z, (21) 

where 
Xji is the value of the independent variable / in zone /, and 
o^ is the coefficient describing the effect of Xfl in the regression. 
The model has been calibrated using least squares, and from an initial set of L 
independent variables the set has been narrowed by using a stepwise regression of the 
kind developed by Efroymson (1962). Four runs were made; the origin and 
destination residuals were modelled, first using the partial-correlation criteria of entry 
into the regression, and second using the stricter criteria based on the partial F-test 
(for details see Draper and Smith, 1966). These results are given in table 3, and it is 
immediately clear that a good proportion of the residual variance is accounted for by 
this procedure. However, a more dramatic demonstration of the way in which pattern 
can be accounted for is given in figure 4 where the destination residuals and residuals 
of residuals are plotted; these diagrams reveal that the previous pattern in the 
residuals is almost entirely 'explained' by the regression, and the remaining effect is 
quite random, apart from the anomalous case of downtown Toronto. 

The second model used in attempting to explain the residuals was a version of the 
singly-constrained residential-location model already given in equations (10) and (11). 

Observed residuals {Rj} Predicted residuals {RJ} 

Absolute residuals of residuals Percentage residuals of residuals 
Figure 4. Spatial predictions and residuals from the linear model of destination residuals. 



The method of residues in urban modelling 201 

The use of this model was based on the attempt to incorporate explicitly an 
additional factor of distance into the analysis by following Zipf s argument that apart 
from the null hypothesis effect of distance, there is another effect which reflects the 
declining propensity to travel with increasing distance, due to the additional effort 
and cost required. However, because interaction models of the type developed here 
are unable to account directly for negative quantities, the residuals were arbitrarily 
scaled as follows: 

Ot = ( 0 / * - 0 / ) + |mii] 
i 

and 

Dj = (Zy-JO/Hlmiii 
/ 

L(O; -O , ) I+ I 

i(zy-z>y)i+i 

5 

J 

Table 3. Estimation of the linear models of residuals. 

Multiple correlation R2 

0 Constant 

1 Population 

2 Services 
(-

3 Basic employment 

4 Total employment 

5 Access to population 

6 Access to services 

7 Access to basic 
employment 

8 Access to total 
employment 

9 Available land 

10 Yearly income 

11 Net migration 

12 Weekly rent 

Origin residuals 

with partial without partial 
F-tests F-tests 

0-9493 

-6949 

0-0523 
(3-2285) 

-1-9237 
-16-2511) i 

-
0-6107 

(9-8638) 

— 

0-1117 
(6-2711) 

— 

— 

— 

• — 

— 

— 

0-9507 

-10506 

0-0539 
(3-0325) 

-1-9236 
(-13-6908) 

-
0-6144 

(8-2875) 

-0-0033 
(-0-3225)3 

0-1565 
(1-7029) 

—. 

-0-0100 
(-0-2407)a 

26-3427 
(0-2847)a 

3-0620 
(0-9565)a 

-0-3064 
(-0-0417) a 

-5-8604 
(-0-3029) a 

(22) 

(23) 

Destination residuals 

with partial 
F-tests 

0-8340 

-5969 

— 

-0-7000 
(-7-8329) 

-
0-3111 

(7-1109) 

— 

— 

0-0567 
(7-7865) 

— 

— 

— 

— 

— 

without partial 
F-tests 

0-8491 

-11167 

-0-0134 
(-1-0163)3 

-0-7494 
(-7-1557) 

-
0-3552 

(6-4293) 

-0-0017 
(-0-2301)3 

0-0584 
(1-2586)3 

0-0392 
(7-2596) 

— 

114-0006 
(1-6583) 

-0-9583 
(-0-4027) a 

-0-5056 
(-0-0926) a 

-20-5372 
( - l -4284) a 

(1) The first number alongside each variable is the at coefficient, the second number in parenthesis 
is the Student t statistic. 

(2) a indicates that the at coefficient is not significantly different from zero in terms of the t statistic 
set at the 95% confidence level. 

(3) The F values for entry of a variable in the regression were set at 3-5, and for deletion at 3-0. 
(4) Accessibilities were all calculated from the potential formula Vt\ see equation (4) in the text. 
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and the explicit interaction model had the following form: 

T = T Oi_ ^ e x p ( - X d y ) 

'y l0t D}exp(-X£fy) ' 
(24) 

This model was recalibrated to the existing travel pattern by use of the Newton -
Raphson method, and its performance seemed reasonable. The results are given 
(see table 4 and figure 5) in terms of the predicted residential locations of employees, 
and a cursory evaluation of these results reveals that most of the residual variance, 
except for downtown Toronto, is accounted for. And of additional significance is the 
fact that the variables used in the linear model of destination residuals are similar to 
those used in this interaction model of the same phenomena. 

There are a number of related problems which immediately arise when models of 
residuals are built along the lines sketched above. Perhaps the major problem revolves 
around the difficulty of evaluating how the two stages interact with each other, but 
more important is the impossibility of separating effects, such as those of distance, 
due to two or more causes. But within the framework used here, it is not feasible to 
resolve these problems satisfactorily, for what is required is a stronger theory capable 
of accounting for the relationships between the stages. Given such a theory, it should 
be possible to build integrated single models in which all the stages are weighted 
appropriately, and it is to tackle this problem that the theory proposed in the 
following sections is addressed. First, an appropriate theory will be suggested and, in 
the rest of the paper, it will be elaborated and tested empirically. 

Table 4. Performance of the singly-constrained model of destination residuals. 

Observed mean travel distance 
Predicted mean travel distance 
Parameter X _ _ 
Correlation r of {Dfbs} and {D;} 
Coefficient determination r2 

Intercept of regression of predictions on observations 936*0703 
Slope of regression 0*9151 
Sum of the absolute deviations between predictions and observations 

6*1000 
6*0999 
0*1563 
0*9769 
0*9543 

148916 

Observed residuals {Rj} Predicted residuals {RJ} 

Absolute residuals of residuals Percentage residuals of residuals 
Figure 5. Spatial predictions and residuals from the singly-constrained model of destination residuals. 
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4 An information-minimising approach to the method of residues 
4.1 Prior and posterior probabilities: the Bayesian viewpoint 
One way of interpreting a many-stage modelling process is through information 
theory, in which each stage gives rise to additional information which needs to be 
incorporated within the model. In the special case of a two-stage procedure, the first 
stage can be likened to designing a model of prior probabilities which are transformed 
into posterior probabilities by the extra information generated at the second stage. 
There is, in fact, a very well-defined technique for making such a transformation in 
the case of the two-stage process, and one way of writing the formula for achieving 
such a transformation is as follows: 

pfjLff 

i J 

where 
p% is the prior probability assigned to the event //, 
I}?; is the likelihood of the event ij given this prior, and 
Pij is the posterior probability, which is clearly the product of the prior and the 

likelihood. 
Equation (25) is of universal significance and is known as Bayes' equation; indeed 
the whole logic surrounding the Bayesian approach to statistical reasoning rests on the 
acceptance of prior probabilities, and much effort has been devoted to methods for 
assigning appropriate priors. In the context of the urban-modelling problems pursued 
here, the prior might relate to the Coleman-Zipf model, the likelihood to additional 
effects over and above the effects incorporated in the prior, and the posterior to an 
integrated probability distribution combining both prior and additional effects, or 
first- and second-stage information. 

Problems of assigning prior probabilities have plagued the school of Bayesian 
statisticians since the time of Laplace, but quite recently a number of theorists, 
namely Cox (1961), Jaynes (1968), and Tribus (1969), have suggested that a 
consistent approach to assigning priors is through the technique of maximum entropy. 
The technique consists of deriving probabilities which are maximally unprejudiced but 
subject to certain information known about the context; the principle of maximising 
entropy involves encoding this information into a probability distribution which 
contains the greatest amount of uncertainty with regard to possible outcomes. It is, 
in this sense, 'maximally unprejudiced'. The technique will be outlined in the 
following section, but many readers will already be familiar with the method in urban 
modelling due to the pioneering work of Wilson (1970), who has used it extensively 
in deriving spatial-interaction models. In the work of Jaynes (1968) and Tribus (1969), 
in particular, it is suggested explicitly that the technique should be used to generate 
p%, but it is unclear how the resulting prior is to be extended within Bayesian 
analysis. Indeed Jaynes and Tribus would probably argue that the derivation of 
posteriors from priors is outside the scope of their immediate interest although, in 
this context, it is critical. 

Therefore, the technique to be proposed here is somewhat different from the 
common use of maximum entropy to assign prior probabilities, for it is based on the 
notion that a technique of encoding a sequence of information into a probability 
distribution is more appropriate than a once-for-all encoding. In the case of the 
two-stage process it is proposed to apply a technique to the problem referred to as 
'information-minimising', but intrinsically and unambiguously related to entropy-
maximising; first, the information concerning the prior will be encoded implicitly, 
and second, additional information, such as that referred to by Zipf, will be encoded, 
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and this will lead to a model of posterior probabilities identical to Bayes' equation 
[equation (25)]. Before proceeding to detail these developments it is of interest to 
note that Stewart (1950), some twenty-five years ago in a review of social physics, 
forecasted a similar line of development to that pursued here, which was started in 
the field of urban modelling by Wilson (1970). 

4.2 Entropy maximising and information minimising 
The principle of entropy maximising is based on maximising a quantity H which 
measures the expected amount of uncertainty or missing information in a probability 
distribution {p,y}. This quantity H is the measure of entropy defined by Shannon 
(1948) in a probability context but previously used in statistical thermodynamics as a 
measure for statistical disorder. Shannon (1948) and others have shown that a measure 
for H which meets certain conditions or desiderata can be defined as 

#=-LXp,ylnp,y , (26) 

where pVj is now being used as the general probability for event // without any prior 
or posterior connotation. It is clearly a measure of uncertainty, for it takes on a 
maximum value when {p,y} is a uniform distribution, that is, when there is no way of 
distinguishing between the probability of any particular outcome occurring, and a 
minimum value when {pif} is unity for one event kl, and zero for all other events 
if =£ kl, namely, when there is complete certainty in the outcome. The principle of 
maximum entropy involves maximising H subject to a series of constraints which 
reflect information known about the probability set, information which must be 
taken into account by any assignment of probabilities. 

The formal problem as stated by a number of theorists can be presented as follows: 
maximise H, subject to the following set of constraints: 

I IPu = <1> , (27) 

and 

Z Z Pi;fk(Xij) = <xk) , k = 1, 2, ..., K , (28) 

where 
fk(Xij) is some function fk of the information xif, and 
(xk) is the expected value of that information. 
There are K constraints of this form, embodying information about K functions of 
(x/;), and the additional constraint in equation (27) ensures that the probability set 
sums to unity. The method of constrained maximisation is well-known and can be 
found in the works of Jaynes (1957; 1968), Tribus (1959; 1969), Wilson (1970), and 
Hobson (1971). The method will not be presented here, but the maximisation always 
leads to a solution for ptj of the following form: 

Pij = Z(X1? \ l ..., \K) exp{-Xif1(x ly)-X2f2(^y)-- -Xfcf^fcy)} , (29) 

where X1} X2, ..., XK are parameters of the distribution related to the expected values 
<Xj), 0c2>, .-, 0r*:> respectively, and Z(Xl5 A2> ••• > ^K) is a partition function related to 
the normalisation constraint in equation (27), and is given by 

Z(X1,X2,...,X/C) = ZZexp{-X 1 f 1 ( ^y ) -X 2 f 2 ( ^ . ) - . . . -X f c f ^y )} . (30) 

If the constraints in equations (28) are all redundant, then equation (29) implies a 
uniform or rectangular distribution, and if there are as many constraints as events in 
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equations (28), the model reproduces the data or information. By using this 
technique it is quite possible to derive the singly-constrained model in equations (10) 
and (11) if H is maximised subject to 

Z Z P I ; = ( r £ ° ' ) a n d £ ^Pijdv = <d> ; 
i / \ I i I i j 

thus it should be possible to extend this technique to deal with additional information 
such as that encoded in the Coleman-Zipf model. 

The technique, as it stands, relates to only one probability distribution {p,y}, but 
there is a continuing debate concerning this question. Many information theorists 
argue that information can only be measured relative to two or more distributions 
and that in the case where there appears to be only one distribution, there is always a 
concealed distribution. Thus information is a relative, not an absolute, concept and 
must be defined accordingly. The argument is involved and it relates to discourse on 
subjective probability. It has been examined by the authors in a related paper (March 
and Batty, 1975), and it is sufficient to note here that a long line of probability 
theorists including Fisher, Turing, Good, Lindley, and Kullback have suggested that 
relative information be measured by the formula 

/(pn:pno)= I£p,ylngj , (31) 
i / Pij 

where 
pfj is the prior probability of event //, 
Pij is the posterior probability of event //, and 
p" = {Pif} and p*0 = {p?f}. 
Equation (31) measures the information difference or gain generated by moving from 
the prior to the posterior. When the posterior is equal to the prior, no information is 
gained, and equation (31) is zero. Whenever prior and posterior are different, the 
information gain is positive. Another advantage in using equation (31) is that it is 
dimensionless; it does not suffer from the difficulties associated with moving from 
discrete to continuous distributions, as does H (see Batty, 1974), and it is never 
negative. 

It has also been shown by Hobson and Cheng (1973) that the formula for 
information / has much more general properties and significance than H\ indeed, H is 
a special case of / , and to demonstrate this consider the amount of missing information, 
H*, defined using equation (31). This information can be calculated as the difference 
between the maximum obtainable information between the prior {pfj} and some 
distribution {p™}, and the prior {pfj} and the actual distribution {p,y}. Then 

IT = I(pnm:ptto)-I(ptt:pao) 

= I Hpf I n ^ r ~ I Tptj ln^g . (32) 
i J Pij i j Pij 

Now if the prior {pfj} is the uniform distribution, and the distribution {p™} is the 
completely certain outcome in which pkl = 1, and ptj = 0, all i #= k, and / ^ /, then 
it is easily demonstrated that the first term in equation (32) is zero, and that H* 
collapses to H. Formally, 

J 5 r = - I I t y l n j t y = ff. (33) 
i f 

Therefore it seems more appropriate to use H* rather than H in the principle of 
maximum entropy, for this more general formula is able to encompass the notion of 
both prior and posterior probabilities. 
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Maximisation of H*, subject to known information expressed as constraints, 
proceeds in exactly the same manner as the previous maximisation of H. The formal 
problem can be set out as follows: 

max//* = m a x j l L / ^ l n ^ r - X I ^ l n ^ g 1 , (34) 
I i / Pij i J Pij J 

subject to constraints on the posterior distribution, {p,y}, which have the same form 
as those in equations (27) and (28). Equation (34), however, can be simplified 
because the maximisation of H* is with respect to the posterior probability p,y only, 
and thus the first term is constant. Then 

{ - Z l P i y l n ^ } , (35) 

and it is clear from equation (35) that the maximisation of H* is equivalent to the 
minimisation of I(pa:pno). Thus entropy maximising in this case is also information 
minimising, although not in the sense used by Evans (1969), where the term is used 
as an alternative for entropy maximising. The formal problem can now be written as 
follows: 

min/(pn :pn o) = m i n i I k y i n g , (36) 
i / Pij 

subject to X ZPv = (1) > 

and 

I lPijfk(Xij) = (**> , * = 1, 2,..., K . (28) 
i J 

The minimisation is accomplished using the same technique as is used to maximise 
entropy, and the general solution to this class of problem is given as 

Pi, = z(\u\!,...,\K) expi-X.fC**)- X a f 2 ^ ) - . . . " XKf*(x,y)} , (37) 

where Z(Xi, X2)..., Xx) is a partition function defined as 

Z(X1; X2,..., Xx) = I £p?iexpi-X^OCf,)-\2{*0c9)-... -\Kf(?c9)} . (38) 
if 

There are several comments pertinent to these questions of two-stage modelling by 
information minimising. Perhaps the most important is the fact that Bayes' equation 
is a direct consequence of the procedure, as is clear by comparing the equation for 
{Ay}* equation (37), by information minimising with equation (25); these equations 
have the same form. The second point of note is the fact that the maximum-entropy 
distribution of Shannon, Jaynes, and Tribus results if a uniform distribution is followed 
by the prior. A third point concerns similar derivations in the literature; Charnes et al. 
(1972) have taken a similar approach to deriving the gravity model by using 
Kullback's statistic and minimising information gain. Their treatment is less general 
than the one given here, but is nevertheless motivated by similar considerations. 
Moreover, Morphet (1975) has pursued a similar course in interpreting the Furness 
time-function iteration procedure for the gravity distribution model as a case of 
information minimising. And finally there is the question of extending the method 
to deal with a sequence of information gains. An example suffices to illustrate the 
point: first the prior could be fixed as a uniform distribution by maximising entropy 
according to Jaynes, subject only to the normalisation constraint, then a first 
posterior could be derived by minimising information between the prior and the 
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posterior and deriving a Coleman-Zipf type model. This model could then be treated 
as a new prior, and further information could be added by minimising information 
gain once more. This process could be continued indefinitely, each stage corresponding 
to one of the stages in the many-stage modelling process, and such a procedure would 
ensure that a consistent model would result. In this way it is possible to build up 
related families of models and, in the following section, an attempt will be made to 
extend the family of spatial-interaction models due to Cordey-Hayes and Wilson (1971). 

4.3 An extended family of spatial-interaction models 
All the models derived by Cordey-Hayes and Wilson (1971) using the technique of 
entropy maximising can be rederived with a variety of possible priors by using 
information minimising. The list of possible models is quite extensive and will be . 
discussed in more detail in a subsequent paper. But to give a flavour to the wealth 
of possible models in the 'extended' family, three models of particular significance 
will be examined. First, consider the prior probability distribution based on the 
Coleman-Zipf model; this seems a reasonable prior, given the previous argument, and 
it can be stated as 

z* = KODd-1 = 0 i D ^ 1 (39) 

if 
Now consider a traffic-distribution model in which origins and destinations are 
balanced, and in which there is a finite amount spent on travel in the region. Then a 
model encompassing this information and incorporating the prior can be derived by 
minimising I(pn:pUo) subject to 

Ip* = ( y ) ' , (40) 

E p i y = ( y ) , (41) 

and 

llPijdif = <3>, (42) 
if 

where (d) is the mean travel distance in the region. The solution to the problem 
from equation (37) is given as 

Ptj = P?jQxp(-Xn-Xj2-\3dif) , v (43) 

which can be written as 

pif = pfjKiKj exp(-Xrfiy) , (44) 

where 

Kt = -expC-X/j) , Kj = exp(-X / 2 ) , . : and X •= X3 . 

The factors Kt and Kj can be defined explicitly by summing equation (44) over i 
and /, respectively, and substituting from equations (40) and (41). Then 

Oi 
Ki = ~"^ , (45) 

i - . . - - . . - = . , . . . 
and 

X' = TlpfiKtexpi-Xdn) • ( 4 6 ) 
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By some manipulation and redefinition of constants—by absorbing them into other 
terms—the model in equation (44) can be rewritten as follows: 

Pij = otiOtPjD, expC-X^y)^ 1 , (47) 

<* = [TIP/D;-exp(-Xdf)v] ' > (48> 

and 

P,= \rItaiOiexp(r\dv)dj^ \ (49) 

A number of comments which refer to all the models in the extended family can be 
made with regard to this model. First, it is clear that any information already 
included in the prior, such as {#,} and {Df}, is not duplicated in the posterior if it 
occurs again in constraint equations (40) and (41). Thus information which is 
redundant drops out, but note that the term djjl is still quite distinct in the posterior. 
Second, it is quite simple to derive the singly-constrained and unconstrained models 
with the Coleman-Zipf priors from equation (47). For the singly-constrained models, 
set either OLt or j37- equal to unity, and for the unconstrained model set both these 
terms equal to unity; as in the original Cordey-Hayes-Wilson family, these models 
can be seen as special cases of the doubly-constrained model. 

A particularly interesting case occurs when equation (42) is replaced by the 
geometric mean for travel distance, that is 

I IPij lndy = <tad> . (50) 

Now minimise I(pn:pn°), subject to equations (40), (41), and (50) with the Coleman-
Zipf prior. This gives a model of the form 

p.. = aiOtfi,DJdtx-l'> , (51) 

where a,- and j87- are defined to ensure that equations (40) and (41) are satisfied. The 
model in equation (51) is the usual traffic-distribution model with an inverse power 
function which is separable into two components: one arising from the prior, the 
other from the additional effects of travel distance. If a,- and j3;- are set equal to 
unity, the unconstrained model which was extensively applied by sociologists during 
the early 1950s is derived, and the separation of exponents reveals how the two 
effects can be consistently combined within the same model. Note that the use of 
constraint equation (50) implies that travellers perceive the effect of distance 
logarithmically, a possibility consistent with certain observed behaviours. And note 
also that the argument about the power to which distance might be raised in gravity 
models becomes manageable and comprehensible within this framework. 

The final example worth detailing here is called Morphet's case, after Morphet 
(1975), who was the first to discuss it. It consists of taking a prior distribution as 
being proportional to the observed distribution. In the case of observed trips, 7^obs, 
the prior is given as 

rpobs nr> 

D?- = — A = ^ f52") 

i J 

Now if information is minimised, subject only to equations (40) and (41), a model of 
the form 

PiJ = p?fKtKf (53) 

results, which Morphet shows to be equivalent to the Furness time-function iteration 
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in which an observed trip matrix, {2Jpbs}, is transformed into a predicted matrix by 
row and column balancing operations; that is 

Ty = Tftoatfy . (54) 

This kind of process has also been discussed by Theil (1972) and Bacharach (1970) in 
the context of input-output analysis. By using this framework, many other models 
are possible, ranging from extremes involving uniform priors, priors based on zone 
size, and priors based on data, to conventional spatial-interaction models which were 
originally derived quite differently. The power of the method is demonstrated by 
this richness of interpretation, but to relate this more formal technique to the earlier 
ad hoc applications, and' to provide some measure of closure to the argument, it is 
now necessary to present empirical applications of posterior probability models in the 
Toronto-centred region. 

5 Formal applications of the method: examples in the Toronto-centred region 
5.1 A negative exponential model with Coleman-Zipf prior 
One of the ad hoc applications of the method of residues consisted in first applying 
the Coleman-Zipf model, and then applying a singly-constrained model to the 
residuals based on the notion that additional effects of distance required explanation. 
The first model applied here treats the Coleman-Zipf model as the prior and includes 
these additional effects as an integral part of the posterior model. The prior is set up 
as in equation (39), and the model is derived by minimising I(pn:puo) subject to 
equations (40) and (42). The model has the following form: 

Pif = P?jKi exp(-Xd,y) , (55) 

and Kt is easily evaluated by summing equation (55) over/ and substituting from 
equation (40). Then 

Oi 
Kt = — ~ - , (56) 

rlpgexpC-Xrftf) 
/ 

and the model can be written in more familiar form as 

Tij = Tpif = CLiOtDj expi-XdqWq1 , (57) 

where 

ok = [p>/exp(-Xdff)Vj ' • (58> 

The predicted number of employees living in / is calculated by summing equation (57) 
over i in the usual way. 

The model was calibrated to the observed mean d by solving 

f l Z ^ p b s ^ / = f l lO^Dj exp(-X<fy) (59) 

for X by means of the Newton -Raphson method. Furthermore the additional 
information gained between prior and posterior was also calculated from the formula 
for expected information, that is 

Kpn:pno)= llPijln^ , (3D 

thus giving another measure of the difference between prior and posterior models. 
The performance of the integrated model is shown in table 5, and isometric plots of 
the predictions and residuals are illustrated in figure 6. From table 5, it is clear that 
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the performance of the posterior is better than the prior, but in terms of the r2 

statistic there is little to choose between the posterior and the baseline model. Some 
might take this as evidence that the approach is of limited applicability since, in this 
case, results, as good if not better, can be obtained without the prior. Yet, in one 
sense, the examples reported here are likely to be ambiguous in quantitative terms, 
for the emphasis is on the effect of a single factor occurring both in the prior and 
posterior models. The more dramatic performance of the ad hoc models was due to 
the duplication of variables in both stages, an effect of somewhat dubious significance. 
Thus this empirical demonstration is of less dramatic proportions than it could be if 
very different information were to be incorporated between prior and posterior. 
Nevertheless, this application serves to demonstrate the approach. 

Table 5. A comparison of model performance: prior, posterior, and baseline models. 

Posterior model: Coleman-Zipf prior: Singly-constrained 
equation (57) equation (18) model: 

equation (10) 

Observed mean travel distance 
Predicted mean travel distance 
Parameter X 
Correlation r 
Coefficient of determination, r2 

Intercept of regression 
Slope of regression 
Sum of absolute deviations 
Information gain 

6-1000 
6-1001 
0-0596 
0-9732 
0-9471 

1536-4531 
0-8607 

278355 
0-0734 

6-1000 
6-1684 
predetermined 
0-9653 
0-9318 

1534-8516 
0-8604 

293325 
not relevant 

6-1000 
6-0997 
0-2230 
0-9757 
0-9521 

1784-8750 
0-8382 

295377 
not rele 

Observed {Dj} Predicted {Df} 

Absolute residuals {Rj} Percentage residuals {r;} 

Figure 6. Spatial predictions and residuals from the negative exponential posterior model. 

5.2 A normally distributed model with Coleman-Zipf prior 
The final model applied here was based on a singly-constrained model incorporating 
information about the mean travel distance and the variance of the trip frequency 
distribution. The model included a Coleman-Zipf prior and information contained in 
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constraint equations (40) and (42), together with the constraint 

where a2 is the variance of the trip frequency distribution. Information is minimised 
subject to the constraints in equations (40), (42), and (60), and this gives rise to a 
model of the following form: 

pif = pffKi exp(-\dif-ndlj) , 

where Kt is a partition function or normalising factor defined as 

Ki= [ Z ^ e x p ( - X ^ - M ^ ) ] ' • 

This model can be rewritten in more familiar terms as 

77. = TPij = aiOiDjexpi-Xdij-iidfid-1 , 

where 

'<% = [ XDf exp(-XJy - iidjfidij M 

(61) 

(62) 

(63) 

(64) 

The exponential function in this model is proportional to the truncated normal 
distribution, and a derivation from this discrete form is given by Tribus (1969). The 
model has been calibrated in the usual manner, using the Newton-Raphson method 
to find X and /x from the simultaneous solution of constraint equations (40) and (60). 

The performance of this model is presented in table 6 and figure 7. In this case 
the performance is similar to the previous model, although an examination of the 
residuals reveals that this model produces a pattern of residuals that is much more 
random than that of all the previous interaction models. The only anomaly is 
downtown Toronto which, in all the models throughout this paper, has been difficult 

Absolute residuals {Rj) Percentage residuals {/y} 

Figure 7. Spatial predictions and residuals from the normally distributed posterior model. 
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to predict. However, one fairly encouraging point with regard to the performance of 
these posterior models over the baseline model is the fact that their overall pattern of 
deviations from reality is less than the baseline prediction. So many effects are 
captured by these various models that a definitive empirical demonstration of their 
value would be unlikely in most applications. Indeed, their value lies more in 
establishing a point of view which might lead to new insights than in improving 
model performance in narrow statistical terms. And it is with this prospect in mind 
that this paper is concluded. 

Table 6. Performance of the normally distributed posterior model. 

Observed mean travel distance 6-1000 Correlation r of {Dfbs} and {£>/} 0-9725 
Predicted mean travel distance 6-1003 Coefficient of determination, r2 0-9459 
Parameter X 0 • 0944 Intercept of regression 1498 -1015 
Observed variance 18-3000 Slope of regression 0-8642 
Predicted variance 18-3013 Sum of the absolute deviations 274838 
Parameter M -0-0019 Information gain 0-0283 

6 Conclusions 
This paper has sought to extend the macroanalytic approach to urban modelling by 
treating the process of model design in distinct stages. Coleman's method of residues 
provides a useful way of breaking the process up into stages, although the method has 
hitherto only been applied in an ad hoc fashion. As this type of analysis fits easily 
into the Bayesian viewpoint, it can be interpreted in terms of the assignment of prior 
and posterior probability sets, and this leads naturally to an information-theoretic 
principle for making such assignments. In the authors' view, there are three significant 
interpretations fostered by this approach; first, the method of residues itself helps to 
emphasise the need for model builders to clarify various parts of their work with 
regard to trivial effects and irrelevant variables. Second, and related to this point, is 
the clarification of the gravity model and arguments about its form through the use 
of this approach. Last, and perhaps most important, there is the development of the 
information-minimising approach which appears to have greater generality than 
entropy-maximising, as is evidenced by the treatment both of priors and posteriors, 
and the extended family of spatial interaction models. 

Doubtless there are many possible extensions to this framework, and some have 
already been hinted at here. For example, the extension of the information-minimising 
approach to a sequence or hierarchy of stages, each adding new information and 
building on the previous priors, could be explicitly demonstrated and empirically 
tested. The development of different priors could lead to new model forms; for 
example, the use of zone size as a prior would lead directly to models in which such 
effects appeared explicitly, thus demonstrating the link between information-gain 
formulae and Shannon's continuous entropy (Batty, 1974). Comprehensive urban 
models such as those of the Lowry genus could be reworked as two-stage models; in 
this context, it seems that concepts such as the economic-base relationship could also 
be treated as relatively trivial characteristics to be incorporated as priors, thus shifting 
the emphasis onto explanation of variations from such baselines. 

It might also be possible to extend this approach within the context of probability 
theory by treating dependent and conditional-marginal probability explicitly. In 
entropy-maximising studies this has not been formally begun, but it does appear that 
added insights could be generated by such analysis. And this could also open the 
way to assessing the relevance of building interaction models which, like the ones 
here, are tested on their marginal totals. However, the jpurpose of this paper has not 
been to provide a cut-and-dried argument, but rather to establish a line of inquiry 
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which, it is hoped, others might take up , alter, or reject; for it is only in this way 
that a progressive approach to urban modelling can be fostered. By applying these 
ideas to. other situations, by testing new priors, and by taking a closer look at model 
performance, this approach could be enriched in the hope that it would lead to 
greater understanding of how to model the urban system and, ultimately, to a greater 
understanding of how to generate urban plans. 
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