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Abstract A critical issue in urban cellular automata (CA)

modeling concerns the identification of transition rules that

generate realistic urban land use patterns. Recent studies

have demonstrated that linear methods cannot sufficiently

delineate the extraordinary complex boundaries between

urban and non-urban areas and as most urban CA models

simulate transitions across these boundaries, there is an

urgent need for good methods to facilitate such delin-

eations. This paper presents a machine learning CA model

(termed MachCA) with nonlinear transition rules based on

least squares support vector machines (LS-SVM) to sim-

ulate such urban growth. By projecting the input dataset

into a high dimensional space using the LS-SVM method,

an optimal hyper-plane is constructed to separate the

complex boundaries between urban and nonurban land,

thus enabling the retrieval of nonlinear CA transition rules.

In the MachCA model, the transition rules are yes–no

decisions on whether a cell changes its state or not, the

rules being dynamically updated for each iteration of the

model implementation. The application of the MachCA for

simulating urban growth in the Shanghai Qingpu–

Songjiang area in China reveals that the spatial configu-

rations of rural–urban patterns can be modeled. A com-

parison of the MachCA model with a conventional CA

model fitted by logarithmic regression (termed LogCA)

shows that the MachCA model produces more hits and less

misses and false alarms due to its capability for capturing

the spatial complexity of urban dynamics. This results in

improved simulation accuracies, although with only less

than 1 % deviation between the overall errors produced by

the MachCA and LogCA models. Nevertheless, the way

MachCA model use in retrieving the transition rules pro-

vides a new method for simulating the dynamic process of

urban growth.

Keywords Cellular automata (CA) � Nonlinear transition
rules � Least squares support vector machines (LS-SVM) �
Urban growth � The Shanghai Qingpu–Songjiang area

1 Introduction

As a result of the rapid population explosion, urban growth

has increasingly become a major challenge in many sub-

urban areas (Ji et al. 2006), particularly in developing

countries such as China (Ding et al. 2013; Li et al. 2014;

Zhang et al. 2015). There is a pressing need to understand

how suburban areas expand across space and over time

under the conditions of rapid population growth and socio-

economic development which is dominated by physical

constraints. It is also important to develop state-of-the-art

methods and tools to detect the spatio-temporal patterns

and changes in urban and regional development (Ye and

Dang 2013). Cellular automata (CA) based urban models

are capable of catching the dynamics of urban growth and

land use change, in comparison with more conventional
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land use transportation models which tend to simulate

urban structure at only one point in time (Batty et al. 1999;

Clarke and Gaydos 1998; Couclelis 1997; Guan et al. 2011;

Liu 2008; Verburg et al. 2002; Wu 1998).

Substantial progress has been made on CA models for

understanding geographical systems and urban dynamics

over the last two decades (Feng and Liu 2013a, b; Lau and

Kam 2005; Liao et al. 2014; Liu et al. 2008; Liu and Phinn

2003; Wu and Webster 1998; Wu et al. 2010). Specifically,

CA models have been applied to simulate urban growth

and land use change (Al-shalabi et al. 2013; Cheng and

Masser 2003; Deng et al. 2014; Mitsova et al. 2011;

Nourqolipour et al. 2014), project future scenarios under

different planning conditions (Barredo et al. 2003; He et al.

2011; Maeda et al. 2011; Yin et al. 2011) and investigate

ecological security patterns (Gong et al. 2009; Mao et al.

2013). Existing studies have demonstrated that the global

spatial pattern of urban growth is the result of local cir-

cumstances (Lau and Kam 2005). As more and more

remotely sensed imagery with high spatial resolution has

become readily available, spatially related driving factors

affecting urban growth can be extracted from these images

using professional data mining software, and thence used to

construct CA models. However, assessing the extent these

driving factors impact on urban growth from which the

probability a land parcel (or cell) changing state from non-

urban to urban still remains a challenging issue for most

CA model-building.

Many spatial statistical methods have been reported for

quantifying the impact of driving factors, typically con-

sidered as CA parameters. Such methods usually include

the analytical hierarchy process devised as a tool for elic-

iting weights associated with driving factors (Wu 1998),

multi-criterion evaluation of the importance of these same

factors (Wu and Webster 1998) and logistic regression

which determines the weights of such factors (Arsanjani

et al. 2013; Liu and Feng 2012; Wu 2002). Although

explicit CA parameters can be obtained by using spatial

statistical methods, the multi-collinearity effects of the

driving factors cannot be effectively removed, and hence

the nonlinear complexity of the fundamental interactions of

urban dynamics cannot be sufficiently reflected (Feng and

Liu 2013a).

With the rapid development of evolutionary computa-

tion, a number of optimization methods have been used to

construct CA models such as genetic algorithms (Cao et al.

2014; Liu and Feng 2012; Liu et al. 2008, 2014), particle

swarm optimization (Feng et al. 2011) and simulated

annealing (Feng and Liu 2013b). Optimized CA transition

rules have been discovered from spatial databases by

minimizing the differences between the simulated urban

patterns generated from a conventional CA model (which

typically employ statistical methods such as logistic

regression or the analytic hierarchy process) and the actual

patterns classified from remote sensing images. CA models

incorporating evolutionary computation algorithms are

able to produce simulation results with higher accuracy

than those without optimization (Feng et al. 2011; Feng

and Liu 2013b; Liao et al. 2014; Liu et al. 2014). In

addition, fuzzy-logic-control and approaches based on

rough sets have been reported as defining CA transition

rules in the form of ‘‘IF…THEN…’’ or ‘‘WHAT…IF…’’

statements (Liu 2008, 2012; Liu and Phinn 2003; Wang

et al. 2011). Moreover, Markov chain-based CA models

have also been developed to model land use change and

urban growth processes (Arsanjani et al. 2013; Guan et al.

2011; Kamusoko et al. 2009; Shafizadeh Moghadam and

Helbich 2013).

For most applications to date, the essential nature of CA

modeling is to identify the complex nonlinear boundaries

between urban and non-urban rural areas and how these

boundaries evolve over time (Feng and Liu 2013a; Huang

et al. 2009; Liu et al. 2008; Yang et al. 2008). This issue

can be transformed to a binary classification problem.

Consequently, kernel methods have been used to retrieve

CA transition rules by mapping the original data into a high

dimensional feature space (Feng and Liu 2013a; Huang

et al. 2009; Liu et al. 2008; Yang et al. 2008). For instance,

Feng and Liu (2013a) used kernel principal component

analysis while Liu et al. (2008) used kernel Fisher dis-

criminant analysis to retrieve the nonlinear CA transition

rules, both of which were inspired by Schölkopf et al.

(1998) method. Another type of kernel method-support

vector machines (SVMs) initially proposed by Vapnik

(1998, 2000)—has also been applied in for land use change

modeling (Huang et al. 2009; Yang et al. 2008). Huang

et al. (2009) have developed a modeling framework based

on unbalanced SVMs to model and analyze urban land-use

change in relation to various factors such as population,

distance to roads and facilities, and surrounding land uses.

Although not strictly a CA modeling approach, this

framework does report a plausible performance for land-

use-change modeling. Yang et al. (2008) has presented a

standard SVMs method to establish the nonlinear CA

transition rules for simulating urban development in the

Shenzhen City, China. Their result has demonstrated that

the standard SVMs based CA model can overcome some

limitations (e.g. harmful effects of inter-correlations

between different driving factors) of existing CA models

and thus obtain higher accuracy in simulating complex

urban systems. Most of the above-mentioned CA models

appear to use probability to define the transition rules

which are static in nature. These static transition rules are

limited in their reflection of the dynamic processes of urban

growth. On the other hand, a threshold must be selected for

the probability-based transition rules to determine whether
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or not a non-urban cell changes its state However, the

determination of the threshold is largely based on trial-and-

error which also affect simulation results. Therefore, there

is a pressing need to explore a CA model which can update

its transition rules dynamically and does not require an

arbitrary definition of such a threshold.

This paper presents a nonlinear CA model based on a

typical machine learning method-least squares support

vector machines (LS-SVM)—to simulate the process of

urban growth. As a modified version of support vector

machines (SVMs), LS-SVM is able to generate a direct

solution by solving a set of linear equations instead of

representing the optimization problem as one of quadratic

programming (Suykens et al. 2002; Suykens and Vande-

walle 1999; Ye and Xiong 2007).

Using this approach, the paper aims to discover the non-

linear CA transition rules by constructing a LS-SVM based

CA model (named MachCA, meaning machine learning

based CA) to simulate the spatio-temporal processes of

urban growth. Previously, Yang et al. (2008) used SVMs to

retrieve the land conversion probability and by using LS-

SVM, this research will advance this line of research to

directly determine the land use transition rules. Most

importantly, the transition rules are dynamically updated for

each iteration of the model through the LS-SVM which also

result in a crisp yes–no decision on whether a land cell

changes its state or not. The great advantage of the method is

thus that it does not need any arbitrary definition of a tran-

sition probability threshold. Compared with the CA models

with probability based transition rules, the proposed CA

model offers a much more explicit way of simulating and

understanding the dynamics of urban growth.

The rest of this paper is organized as follows. Following

the introduction, Sect. 2 presents the location of the study

area and the data sources used. Section 3 presents the LS-

SVM method which is able to discover the nonlinear CA

transition rules and then construct the MachCA model. In

Sect. 4, the implementation of the proposed MachCA

model in the study area is presented, and its performance is

evaluated by comparing it with a standard LogCA model.

Finally, the conclusions are presented in Sect. 5.

2 The study area and its data

A fast growing suburban region, the Qingpu–Songjiang area

of western Shanghai, China as shown in Fig. 1, was chosen

as the study areawhichwe used to examine the validity of the

MachCA model. The Qingpu–Songjiang area includes two

administrative districts, Qingpu District and Songjiang

District, which have a total area of 1275 km2. Over the last

two decades, the study area haswitnessed rapid development

with dramatic land use and land cover change, considerable

expansion of its urban extent, a population explosion, and a

massive increase in its productive economy. For instance, the

population in the study area grew from 150,000 in 1985 to

1.83 million by the end of 2008 with population density

increasing to 1435 per square kilometer land (Shanghai

Municipal Statistics Bureau 1985, 2008). With this high rate

of population growth, an explosive growth of the urban

extent has been observed in this area. Therefore, Qingpu–

Songjiang is a representative study area in which to explore

the rapid development of suburban regions in China (Hu and

Lo 2007; Ji et al. 2006;Yue et al. 2012), and tracking of urban

development in such rapidly developing metropolitan cities

are important for our generic understanding of urban

dynamics (Feng and Liu 2013a, b; Yue et al. 2014).

In this study, two Landsat images covering the study

area acquired on 18 July 1992 and 24 March 2008 were

used. The original spatial resolution of the images is 30 m.

In addition, a digital topographic map at a scale of 1:50,000

was obtained as the reference data for georectification. A

total of 30 ground control points were chosen from both the

digital topographic map and two Landsat images. The

images were georectified using the polynomial method

ENVI 4.5, and the root mean squared errors for the geo-

metric correction were all less than 0.52 pixel. Based on the

georectified images in 1992 and 2008, a land change map

shown in Fig. 2 was produced using the default spectral

angle mapper classifier of ENVI 4.5 and overlay analysis in

ArcGIS 10.1. The excluded land use type shown in Fig. 2

contains water bodies and wetlands that are resistant to

urban growth. The non-urban land use type includes public

green spaces, parks, agricultural lands (including basic

protective farmland, or BPF), and aquaculture farms.

The 1992 classified land use map has served as the

initial and reference state for modeling urban growth with

the MachCA model. Figure 2 shows that apart from the

water bodies, the urban area only constituted 6.5 % of the

land in 1992 while the rest were non-urban. However, by

2008, an additional 42.9 % of the candidate region had

been converted into urban land. This is an exemplar of a

typical very fast growing urban area in eastern and coastal

China, characterized by very complex nonlinear boundaries

between urban and non-urban rural areas. The Qingpu–

Songjiang area is thus extremely suitable for testing the

MachCA model, which aims at separating the complex

boundaries between urban and non-urban land.

3 Methodology

3.1 The MachCA model flowchart

The MachCA model consists of three modules: the LS-

SVM Model Training, the Land Use Change Decision
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Fig. 1 The Qingpu–Songjiang area of Shanghai, China

Fig. 2 Observed urban growth from 1992 to 2008 in Qingpu–Songjiang area, Shanghai. The excluded land use type contains water bodies and

wetlands, a persistent land use category in urban growth in this study
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Rules, and Map Visualization which we show as a three

stage work flow in Fig. 3. The first two modules were

realized using LS-SVM lab v1.8 released by Suykens et al.

(2002) while the map visualization module was realized in

ArcGIS. Each of the three modules is discussed below.

In Fig. 3, tu indicates the time at iteration u; M is the

number of variables for model training; x1, x2,…, xM are

the input variables; K(x1, x), K(x2, x),…, K(xM, x) are the

support vectors; and y(x) is the classifier. The land use map

at time tu (u = 0) is based on observed land use in 1992

classified from the relevant remote sensing image; land use

maps at future time instants tu (u ranges from 1 to n) are

simulated results using the MachCA model. The minimum

number of iterations of the model is 1, however, the total

number of iterations (n) are not related to the temporal

process but rather the calibration procedure. The LS-SVM

Model Training module learns the CA transition rules

using the LS-SVM method. Samples for model training

were obtained from land use map at tu and used to simulate

the land use change at tu?1. Therefore, the transition rules

were dynamically reconstructed for each iteration of the

model implementation. Different from traditional CA

modelling methods, this LS-SVM model takes the neigh-

bourhood as a variable (as seen in Table 1). The Land Use

Change Decision Rules module determines whether a non-

urban cell will be converted to an urban cell or not, based

Fig. 3 Flowchart of the MachCA model for urban growth simulation. BPF represents Basic Protective Farmland
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on the result from the LS-SVM model and subject to BPF

(Basic Protective Farmland) constraints. The Map Visual-

ization module uses GIS to visualize land change. The

three modules iterate over the entire modelling process. If,

at any time (e.g. tu), the model generates a result with a low

simulation accuracy (e.g. lower than the simulation accu-

racies generated in other areas of Shanghai (Feng and Liu

2013a, b; Feng et al. 2011)), then the entire MachCA

model would be reconstructed at the next time step (i.e.,

tu?1) based on resampling from the simulated results at tu.

Subsequently, the regenerated MachCA model would be

used to simulate the land use map at time tu?1.

3.2 Input data

In China, urban development is a complex process which is

affected by many physical, institutional and economic

factors such as globalization, rural industrialization, trans-

portation and infrastructural development, and land man-

agement systems (Wei and Ye 2014). However, data

reflecting institutional and economic factors are largely

unavailable to researchers. Therefore, similar to other

studies (Al-shalabi et al. 2013; Feng and Liu 2013a; Yang

et al. 2008; Zhang et al. 2015), our model of urban growth

focuses on understanding the physical dimension of the

driving factors. A total of eight driving factors were chosen

for simulating urban growth in the Qingpu–Songjiang area

from 1992 to 2008. These driving factors were selected by

considering urban growth dynamics in Shanghai (Feng and

Liu 2013a, b) which include the distance-based variables,

neighbourhoods, constraints, and a stochastic factor which

we show in Table 1.

As identified in the spatial analysis of urban growth,

spatial variables adopted in CA models should closely

relate to urban development and land use changes (Reza-

yan et al. 2010; Stanilov and Batty 2011; Wu and Webster

1998). With regard to spatial variables used in the MachCA

model, some of them (e.g. distance to urban centres)

clearly meet such requirements as revealed by existing

research (Feng et al. 2011; Wu 1998, 2002; Wu and

Webster 1998). Other spatial variables, such as distance to

commercial housing areas, were chosen to reflect the fact

that these factors play important roles in the urban growth

of Chinese cities. On the other hand, some of the widely

Table 1 Variables use in the MachCA model for the generic simulation of urban growth in the Qingpu–Songjiang area of Shanghai, China

Variable Meaning Interpretation Role

y Conversion label y is assigned to 1 if a cell is transformed from non-urban state to urban state,

whereas y is assigned to -1 if a cell keeps its state over time

Training LS-SVM model and

constructing final CA rules

Duc Distance to urban

center

An Euclidean distance from a cell to the city center, that is usually the

administrative center in China; a map at 1992 was used and the locations of

the urban centers of the study area did not change since 1992

Dtc Distance to town

center

An Euclidean distance from a cell to the town center; a map at 1992 was used

and the locations of the town centers of the study area did not change since

1992

Dcomh Distance to

commercial

housing area

An Euclidean distance from a cell to commercial housing area launched by

local government of Shanghai; a map at 1992 was used and the locations of

the commercial housing areas of the study area did not change since 1992

Dmr Distance to main

roads

An Euclidean distance from a cell to main roads. The length of the main

roads of the Qingpu–Songjiang area has experienced a rapid growth from

1992 to 2008 and a map of main roads at the middle time point (i.e. 2000)

was used

Dagri Distance to

agricultural land

An Euclidean distance from a cell to agricultural land; a map at 1992 was

used and the protective agricultural land did not change since 1992

Nei Neighborhoods 5 9 5 cells of the immediate neighborhoods of a central cell which was given

by:

Neih ¼
P5�5

j¼1
ðSk ¼UrbanÞðh 6¼ kÞ
5� 5� 1

St Stochastic A stochastic factor imitates the impact of an emergent development due to

institutional policy, which was given by:

St ¼ 1þ ð�lnrÞh

where r ¼ 0:5 and h ¼ 5 were selected for the MachCA model according to

previous research (Feng and Liu 2013a, b; Feng et al. 2011)

LC Local constraints Local constraints on urban growth are regions unavailable for development

such as basic protective farmland (BPF)

Constructing final CA rules
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used variables, such as slope or digital elevation models,

were excluded from this study as the terrain of Qingpu–

Songjiang area is pretty flat. In addition, the process of

urban growth is considered as being impacted by many

factors that are unclear and uncertain and might not follow

any well-defined growth trajectories (Feng et al. 2011;

White and Engelen 2000; Wu and Webster 1998). This

enables us to introduce a stochastic factor in the MachCA

model. At the same time, water bodies and total areas

available for development were considered as the local and

global constraints, respectively. The total areas available

for development include all areas excluding the urban area

at 1992, water bodies, wetlands, and the BPF. Amongst

such factors, spatial variables and neighbourhoods reflect

the agglomeration effect of urban development and the

attractive power of infrastructure compared with the

stochastic and constraint factors (Feng and Liu 2013a, b).

All distance variables used in this study were normalised

by (Feng and Liu 2013a):

Dnorm ¼ Dorig

Dmax � Dmin

; ð1Þ

where Dnorm is the normalised value of each distance

variable which ranges from 0 to 1; Dorig is the original

value of each spatial variable; Dmax and Dmin are the

maximum and minimum values of each spatial variable,

respectively. Figure 4 illustrates these distance variables

and the distribution of BPF as local constraint to urban

growth.

3.3 Least squares support vector machines

LS-SVM method is a new development of standard SVMs

which leads to direct optimization of the objective function

that defines the hyperplane separating the two regions of

the higher dimensional space by replacing the inequality

constraint conditions in standard SVMs by equality con-

straint conditions (Suykens et al. 2002; Suykens and

Vandewalle 1999). The LS-SVM method inherits the

essential idea of the standard SVMs on searching the

optimal classification hyper-plane in a higher dimensional

space, but has lower computational complexities and less

memory requirements than the standard SVMs (Ye and

Xiong 2007). In this sense, it relaxes the conditions for

optimality posed by original SVMs in by replacing the

quadratic optimization function with a set of linear equa-

tions that can be solved simultaneously. Readers who are

unfamiliar with these kinds of multivariate optimization

methods are referred to the literature, particularly to Suy-

kens and Vandewalle (1999).

Fig. 4 Distribution of distance variables and Basic Protective Farmland (PBF) as a local constraint to urban growth
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When modeling urban growth, it is somewhat compli-

cated to determine the classification boundary for con-

verting a non-urban cell to an urban cell (which we show

schematically in Fig. 5a). Traditional linear methods such

as logistic regression seem insufficient to find the classifi-

cation boundary (Feng and Liu 2013a; Yang et al. 2008). In

contrast, the LS-SVM method transfers the two-dimen-

sional nonlinear classification (i.e. non-urban or urban

classification) in the original space into a linear classifi-

cation in the feature space, and in this way, nonlinear CA

transition rules can be established (as implied in Fig. 5b).

To briefly introduce the LS-SVM method, we suppose

that there are M training sample pairs xi; yif gMi¼1, where

x 2 RM is the ith input pattern with known output pattern

and yi 2 �1;þ1f g. Thus a decision function of the binary

classifier can be constructed as follows:

f xð Þ ¼ sgn½WTu xð Þ þ b� ð2Þ

where sgn is a decision rule, W ¼ w1; w2; . . .; wnð Þ and b
are the weight vectors and bias to the hyper-plane

\W � x[ þ b ¼ 0, respectively. In the LS-SVM, the

formulation of an optimization problem is given by Suy-

kens and Vandewalle (1999) and we follow their treatment

and notation in the following. Then:

min
W;b;e

JðW; b; eÞ ¼ 1

2
WTW þ 1

2
C
XM

i¼1

ei ð3Þ

s:t: yi W
Tu xið Þ þ b

� �
¼ 1� ei; i ¼ 1; . . .;M ð4Þ

where u �ð Þ is a nonlinear function that maps the input

space into a higher dimensional space; ei are variables

(dummy error terms) created to violate constraints,

i.e.,yi W
Tu xið Þ þ b

� �
� 1, which is also called as the regu-

larization parameter that determines the training error and

generalization potential of the LS-SVM model (Suykens

and Vandewalle 1999). Furthermore, the Lagrange function

for the above optimization problem is defined as:

L W; b; ei; aið Þ ¼ J W; eið Þ

�
XM

i¼1

ai yi W
Tu xið Þ þ b

� �
� 1þ ei

� � ð5Þ

where ai are Lagrange multipliers that can be either posi-

tive or negative.

Consequently, the conditions for optimality are derived

by Suykens and Vandewalle (1999) as

oL

oW
¼ 0 ! W ¼

XM

i¼1

aiyiu xið Þ

oL

ob
¼ 0 !

XM

i¼1

aiyi ¼ 0

oL

oei
¼ 0 ! ai ¼ Cei

oL

oai
¼ 0 ! yi W

Tu xið Þ þ b
� �

� 1þ ei ¼ 0

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð6Þ

By eliminating ei and W, the optimization problem can

be written immediately as the solution to the following set

of linear equations:

0 yT

y Xþ C�1I

� �
b
a

� �

¼ 0

1M

� �

ð7Þ

where X ¼ ZZT, Z ¼ ½u x1ð Þ;u x2ð Þ; . . .;uðxMÞ�T, y ¼
½y1; y2; . . .; yM�T, 1N ¼ ½1; 1; . . .; 1�, and 1M ¼ ½a1; a2; . . .;

Fig. 5 Transferring the two-dimensional nonlinear classification in the original space into a linear classification in the feature space by using the

LS-SVM method. Left Nonlinear classification in the original space, and Right Linear classification in the feature space. (Feng and Liu 2013a)
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aM�. According to Mercer’s condition defining a positive-

definite matrix, the matrix X ¼ ZZT can be taken as a

kernel:

Xij ¼ yiyju xi2ð ÞTu xj
� 	

¼ yiyjK xi; xj
� 	

ð8Þ

Among the choices presented by Vapnik (1998), the

Gaussian radial basis function (RBF) is selected for mod-

eling urban growth on the basis of to the related works

(Feng and Liu 2013a; Huang et al. 2009; Liu et al. 2008;

Yang et al. 2008) and this is given by:

K x; xið Þ ¼ exp �j x� xij jj2=2r2
n o

ð9Þ

where r is a constant reflecting data distribution properties.

Accordingly, Eq. (1) is achieved as the objective binary

classifier by solving the linear set of Eqs. (6) and (7), and

thence enabling us to categorize the linearly non-separable

urban boundaries. The decision function of the binary

classifier is thus given by:

f ðxÞ ¼ sgn
XM

i¼1

aiyiK x; xið Þ þ b

" #

ð10Þ

and this enables us to refine the transition rules.

3.4 Transition rules

Based on the binary classifier of the LS-SVM model,

whether a non-urban cell would be converted to urban cell

or remain its current state at time tu?1 can be determined.

The final CA transition rules were given by:

Stuþ1
¼

1; s:t:
PM

i¼1

aiyiK x; xið Þ þ b


 �

ti

� 0 and LC 6¼ BPF

�1; s:t:
PM

i¼1

aiyiK x; xið Þ þ b


 �

ti

\0

8
>>><

>>>:

ð11Þ

where 1 indicates the central non-urban cell will be con-

verted to urban state while -1 indicates that the state of the

central non-urban cell will remains unchanged. Note that

the vectors x represent the heart of the model in that these

contain the various input data that are defined in Table 1,

and thus these are intimately related to the transition from

non-urban -1 to urban ?1.

3.5 LogCA model for comparison

As a comparison, a conventional logistic regression-based

CA model (LogCA) was also constructed using the same

input variables in the same study area to generate a

simulation which is comparable to that of the MachCA

model. The transition rule for each cell h in the LogCA

was given by:

Ptu
h ¼ ð1= 1þ exp 1:109� 0:815Duc � 0:766Dtcðð

�0:587Dcomh � 0:749Dmr þ 0:532DagriÞ
	

� Neih � St � LC

ð12Þ

where Pt
h is the land use conversion probability of a cell h

at time tu, Neijh is the neighborhood effect, St is the

stochastic factor, and LC is the local constraint defined in

Table 1. The distances D� are also defined in this table. By

comparing this conversion probability with a pre-defined

threshold value (Liu and Feng 2012; Wu 2002), if the

conversion probability of the cell at time tu is larger than

this pre-defined threshold (e.g. [0.5), the cell will be

converted to an urban state in the subsequent time step, that

is yh ¼ þ1: Otherwise, the state of the cell will remain

unchanged as yh ¼ �1:

4 Results and discussion

4.1 Simulation results

Using the variables listed in Table 1, a MachCA model

which focuses on the transition from non-urban to urban

use has been constructed to simulate the process of urban

growth in Shanghai’s Qingpu–Songjiang area from 1992 to

2008. In the MachCA model, the regularization parameter

c in the decision function and the coefficient r2 (sig2) in

the radial basis function were defined as c = 10 and

sig2 = 0.4, respectively. Based on the training results with

12,470 samples, 12,470 support vectors were acquired with

a bias b = -0.8051. The MachCA model was operated for

20 iterations, noting that these are not related to the tem-

poral process but rather the calibration procedure. The

simulation accuracies were calculated using a cell-by-cell

comparison method (i.e. a confusion matrix) based on the

2008 observed land use map with the MachCA model

generating the simulated map results. At the start of the

simulation, the 1992 observed land use map was consid-

ered as the simulated result without a CA model (the

NULL model) and was compared with the 2008 observed

land use map with such a NULL model being initially

proposed by Pontius and his colleagues (Pontius et al.

2004; Pontius and Spencer 2005). In the other case, the

simulated results from 1 to 20 iterations were compared

with the 2008 observed land use map and this generated the

simulation accuracies which are shown in Fig. 6.

Figure 6 shows that the accuracy of the NULL model is

57.2 % (with respect to the 1992 vs. 2008 observations).

The 1st iteration of the MachCA model generated an

accuracy of 63.8 % with the accuracy increasing consis-

tently for the first 16 iterations until it reaches its highest

accuracy of 81.2 % at the 16th iteration. However, the
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accuracy decreased slightly from 80.5 to 78.2 % in the last

four iterations from 17 to 20 and the tendency over this

latter range was towards stability. Therefore, the MachCA

model was finally implemented with its 16th iteration. As a

result, the urban growth simulations were conducted with

both the LogCA and proposed MachCA models for 2008 in

Qingpu–Songjiang area of Shanghai as we illustrate in

Fig. 7a, b.

Figure 7 shows very strong visual similarities between

the simulation maps generated by the LogCA and MachCA

models for the end year 2008. Visual comparison is

important because the human mind can quickly detect key

patterns between different maps in contrast to spatial

statistics which in general are not sufficiently indicative of

subtle differences in pattern that only the mind’s eye can

discern (Pontius et al. 2004). It was observed from Fig. 7

that urban growth in Qingpu–Songjiang area has mainly

occurred around the position of clusters of urbanized cells

which existed at previous times. Using the method of Chen

and Pontius (2010), simulated urban growth during

1992–2008 produced by both the LogCA and MachCA

models were compared with the reference map of urban

growth during this period as illustrated in Fig. 2, the map

which was generated from remote sensing images. Figure 7

shows that the LogCA model missed 11.1 % of the total

landscape that changed the state from non-urban to urban,

incorrectly simulated 8.3 % of the total landscape that did

not change the state, correctly simulated 31.6 % that

changed the state, and correctly rejected 42.5 % of the total

landscape that did not change the state from non-urban to

urban. Hence the overall accuracy of the LogCA model is

80.6 % which include the hit (H), correct rejection of non-

urban areas (CR) and the correct rejection of urban areas at

1992 (U).

Compared to the LogCA model, the MachCA model had

a lower proportion of misses (10.4 vs. 11.1 %) and higher

hits (32.4 vs. 31.6 %), while it also had lower correct

rejections (42.3 vs. 42.6 %) and lower false alarms (8.3 vs.

8.4 %). Therefore, the overall accuracy is 81.2 % (Fig. 7).

Although the MachCA model has generated only less than

1 percentage point better simulation accuracies than the

LogCA model, the consistent improvement in most of the

accuracy measurements still demonstrates a somewhat

improved performance over the LogCA model.

4.2 Quantity and allocation errors

Apart from the misses, false alarms and correct rejections

identified, the simulation errors were collapsed into a

budget of quantity and allocation errors using the method

proposed by Pontius and his colleagues (Pontius et al.

2004; Pontius and Malanson 2005; Pontius and Millones

2011; Pontius and Spencer 2005). This error budget reveals

the proportions of components of agreement and dis-

agreement according to the comparison of map pairs. The

error budget is derived from comparison of the simulation

and reference maps based on two measurements: quantity

errors (Q) and allocation errors (A). Using the error budget

method, the quantity and allocation errors were computed

for the 2008 simulation maps produced by both the LogCA

and MachCA models respectively as we illustrate in Fig. 8.

Figure 8 shows, for the LogCA model, amongst the

19.4 % simulation errors, 2.8 % is due to quantity error and

16.6 % to allocation error. For the MachCA model,

amongst the 18.8 % simulation errors, 2.0 % is due to

quantity error and 16.8 % due to allocation error. The

quantity error is the absolute difference between misses

and false alarms, which derives from the fact that the

model missed some location of the observed urban growth

and simulated the wrong location. If a model simulates less

than the reference urban gain, then the false alarms are

fewer than the misses. If a model simulates more than the

reference urban gain, then the false alarms are more than

the misses. The logCA model simulated less urban gains

than the reference urban gains by 2.8 %, while the

MachCA model simulated less urban gain by 2.0 %. In

fact, more non-urban cells could be converted to urban

cells with more model iterations (e.g. more than 16 itera-

tions). Therefore, the MachCA model could miss less ref-

erence growth with more iterations, or it could simulate

more wrong locations and suffer a lower overall agreement.

Hence, the MachCA model simulated less change than the

reference change to avoid the false alarms and minimize

the errors.

Obviously the hits ([31 %) produced by the both CA

models applied to the Qingpu–Songjiang area of Shanghai

are much higher than that of a relatively steadily growing

area such as Logan City, Australia with less than 8 % hits

(Liu et al. 2014). This may be due largely to the increase of

urban areas in the Qingpu–Songjiang area over the mod-

eled period compared to Logan City, rather than any par-

ticular features of the model used. It is speculated that it is

easier for the same CA model to get a higher number of

Fig. 6 The change in the accuracies through the iterations of the

MachCA model
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hits in a fast growing area (Pontius et al. 2008). However,

the MachCA model obtained more hits and less quantity

error in simulating the same study area compared with the

LogCA model, but the allocation error of the MachCA

model is slightly higher.

Although MachCA does not perform better in all aspects

compared to the LogCA, the model does prove to be

capable of capturing urban dynamics associated with the

complex boundaries of the urban-nonurban fringe. Most

importantly, the MachCA model is different from con-

ventional CA models in retrieving the transition rules as it

extracts these rules from the location of the input data in

high dimensional feature spaces (Feng and Liu 2013a; Liu

2008; Yang et al. 2008). It also differs from the standard

Fig. 7 The 2008 simulated urban growth in the Qingpu–Songjiang

area using both the LogCA and MachCA models. Hits (H) indicate

that observed growth was simulated as growth, misses (M) indicate

that observed growth was simulated as persistence, false alarms (FA)

indicate that observed persistence was simulated as growth, and

correct rejections (CR) indicate that observed persistence was

simulated as persistence (after Chen and Pontius 2010). The land

use titled ‘excluded’ indicates water areas and wetlands
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SVM based CA model (Yang et al. 2008) in that the model

directly retrieves a yes–no decision with respect to the

transition rules, rather than relying on the definition of an

arbitrary probability threshold value through trial-and-

error.

5 Conclusion

This research has demonstrated that various nonlinear

features of urban dynamics can be captured by the LS-

SVM method. Based on the extracted spatial variables and

the classification of initial states, the nonlinear CA transi-

tion rules can be constructed in a higher dimensional space

implied by the LS-SVM approach. With these nonlinear

transition rules, the MachCA model identifies the complex

boundaries of urban extent which cannot be sufficiently

discriminated by conventional methods such as the logistic

regression and principal component analysis.

The MachCA model was applied in a very rapidly

growing area of one of the largest Chinese city regions

using data from 1992 to 2008. The error budget conducted

between the reference and simulation maps shows that,

both in 2001 and 2008, the MachCA model reduces by less

than a percentage point the quantity error in comparison

with its slightly simpler cousin, the LogCA model.

As a novel urban modeling technique, MachCA enriches

the theories and methods of geographical CA by addressing

the complex boundaries of urban extent. However, limita-

tions of this method also exist because the LS-SVM method

is relatively complex in its theory and implementation.

Therefore, it requires an understanding of the mechanisms of

urban dynamics as well as mastery over the requisite

mathematical and computer knowledge for its application.
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