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Abstract
Urban systems present hierarchical structures

at many different scales. These are observed
as administrative regional delimitations, which
are the outcome of geographical, political and
historical constraints. Using percolation theory
on the street intersections and on the road net-
work of Britain, we obtain hierarchies at differ-
ent scales that are independent of administra-
tive arrangements. Natural boundaries, such as
islands and National Parks, consistently emerge
at the largest/regional scales. Cities are devised
through recursive percolations on each of the
emerging clusters, but the system does not un-
dergo a phase transition at the distance thresh-
old at which cities can be defined. This specific
distance is obtained by computing the fractal
dimension of the clusters extracted at each dis-
tance threshold. We observe that the fractal di-
mension presents a maximum over all the differ-
ent distance thresholds. The clusters obtained
at this maximum are in very good correspon-
dence to the morphological definition of cities
given by satellite images, and by other methods
previously developed by the authors [3].

Introduction
Many different systems are intrinsically hier-

archical. The different hierarchical levels can
sometimes be identified by phase transitions,
not necessarily of first or second order. For
some of these cases, the system can be mod-

∗Corresponding author, email: e.arcaute@ucl.ac.uk

elled in terms of percolation processes at dif-
ferent scales. Percolation theory [41, 13] stud-
ies how a piece of information (or a disease, or
a fire, etc.) spreads in space, reaching a criti-
cal point at which a giant cluster appears. In
its most general form, the process is defined in
an infinite lattice and for a random occupation
probability. Relaxing the constraints, the anal-
ysis can be extended to finite systems, where the
clusters are the outcome of some thresholding
process. Some of these systems present a multi-
plicity of percolation transitions, revealing a hi-
erarchical organisation. This was observed for
the brain [20], where the percolation process is
considered in terms of the connectivity between
voxels given by the different stimuli thresholds.

A crude analogy can be drawn between the
structure of the brain and that of an urban sys-
tem. Both consist of highly integrated mod-
ules which connect to each other at different
scales, giving rise to a functional system. For
the urban system, the modules correspond to its
cities, and its different regional divisions are a
manifestation of its inherent hierarchical struc-
ture [21, 11]. We hence implement a similar
methodology to [20] on Great Britain, in order
to unveil its hierarchical organisation indepen-
dently of administrative provisions.

We take as the fundamental structure for the
urbanised space the street network. This is one
of the most pervasive structures whose evolu-
tion has been driven by strategic choices on
communication between places, and community
strength within settlements. It is thus not sur-
prising that such a process could lead to an in-
trinsic hierarchy.

In this paper we investigate whether the spa-
tial distribution of the street intersection points
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can reveal such a structure through percolation
theory. Readers would have noticed to their sur-
prise that the network is stripped away. Such
a conscious choice is twofold: on the one hand,
the street intersections correspond to the main
points of convergence where the relevant inter-
actions take place, as is the case of assembly
places in Anglo-Saxon Britain [5]; on the other
hand, we purge ourselves from the all time prob-
lem of the digitisation of the dataset, that is
the problems with the topology of the network,
the missing streets, the inaccuracy of streets al-
most meeting, etc. In any case, for the skeptical
reader, we also provide a similar methodology
developed directly on the entire street network,
which has been carefully prepared and checked,
and we show that the results are recovered.

The percolation process is hence applied to
the street intersections, which correspond to
the occupied sites in space, connected to each
other through proximity only. The distribution
of the street intersections in space relates very
closely to the extension of the urbanised space
and to spatial relations to other urban spaces
[27, 12, 43]. Through a multiplicity of perco-
lation transitions, the hierarchical structure of
Britain emerges. Nevertheless, cities cannot be
defined in terms of such transitions. Through
the analysis of the fractal dimension of the
emergent clusters, a threshold can be identified
at which cities are well-defined. The morpholog-
ical properties of cities and regions are notably
different. These have been extensively analysed
for street networks [42, 35, 36, 6, 31], neverthe-
less, the statistical properties previously found
cannot be used to define the boundaries of a
city, since there is no clear transition between
urban and rural networks. Here we show that
this specific morphological property observed
over the whole system, gives a maximum over all
the thresholds. At this maximum, the obtained
clusters are in very good correspondence with
other proxies for cities, such as satellite images
of the urbanised space, and previous definitions
of cities proposed by the authors [3].

Methodology and dataset
Percolation theory is classically approached

in terms of the probability of a site being occu-
pied in a lattice. It can also be thought of in
terms of bond percolation, in which the sites are
all occupied, and the probability corresponds to
a bond to be open and to connect sites. In our
analysis, the sites will correspond to the inter-

section points.
In the following section we present two

methodologies: 1) the percolation on the inter-
section points, and 2) the percolation on the
street network. For both methods we use the
most complete database for street networks in
Britain: the OS MasterMap [1]. For compu-
tational purposes, we reduce the size of the
dataset by introducing the following simplifi-
cations: 1) we remove the points that do not
convey any morphological information, such as
nodes of degree two, which for example corre-
spond to streets changing name; 2) we replace
roundabouts by a single intersection point,
which is primarily relevant for the methodology
on networks.

Percolation on the street intersections
For this method we take the dataset described

above, and we remove all the street segments,
leaving only the intersection points. We then
apply a clustering algorithm that corresponds
to a thresholding procedure parameterised by
distance. This is simply defined as the Eu-
clidean distance between points, whether they
are connected or not. We observe different con-
figurations of clusters appearing at different dis-
tances. This procedure can be interpreted in
terms of bond percolation as follows: the prob-
ability of a bond to be open between sites, cor-
responds to the distance between the intersec-
tion points. In this sense, one can think of a
fully connected network in which the distance
between nodes gives the probability for the link
to exist after a normalisation procedure.

In practical terms, the algorithm is similar to
the CCA (City Clustering Algorithm) [37, 38]
based on population distribution in space, and
the natural cities definition given also in terms
of road intersections [25]. In [17] this algorithm
is also employed to understand the emergence of
regions through percolation theory. It is impor-
tant to note that most of these algorithms have
been constructed in an effort to define cities in
a consistent way, and considerable research is
still undergoing in this direction [39, 19]. These
algorithms differ from models of urban growth
based on correlated percolation [28, 29, 32], and
on correlations with urban sprawl [22].

In detail, our algorithm is defined in terms of
a distance parameter that determines clusters
of intersection points in which every point has
a neighbour at a distance equal or smaller than
the given threshold. The algorithm can be im-
plemented on the continuous space, or for large
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datasets requiring computationally demanding
calculations, on a grid covering the space of
points. Please refer to the appendix for more
detail of the implementation of the algorithm.

Percolation on the network
In this case, we are considering the ‘real’ net-

work, where intersection points are connected if
and only if there is a street connecting them.
The clustering procedure is very similar to the
procedure described above, but in this case the
distance is given by the actual extent of the
street. An open bond hence corresponds in this
case to an existing street according to the dif-
ferent distance thresholds. And once again, the
links can be re-interpreted in terms of probabil-
ities if the distances are normalised.

Results
Urban hierarchies

In both cases the behaviour of the system is
the same. If one thinks about the process start-
ing from the maximum distance at which all the
points in Britain are connected, then lowering
the distance threshold leads to a series of per-
colation transitions that divide the space into
clusters. The different transitions can be ob-
served by looking at the evolution of the average
cluster size removing the giant component [41].
We denote this by < S >∗. In order to avoid
clusters that are given by single points, we im-
pose a minimum cluster size Smin = 600. The
choice is somewhat arbitrary; nevertheless since
at this stage we are interested in the hierarchical
structure of Britain and the natural emergence
of regions, smaller clusters will not contribute
to this. To put this number into context, the
number of intersection points in large cities is
of the order of 105 and of 104 for the 30 largest
ones.

The evolution of < S >∗ from large d to
smaller d, shown in Fig. 1 (its network coun-
terpart can be found in the appendix Fig. 8),
indicates points at which important transitions
take place in the urban space, see Fig. 2. The
first transition at d = 1120m shows the split of
Scotland from England and Wales. It is worth
noticing that this transition is present with and
without street segments, and that no natural
barriers, such as mountains or rivers, are re-
sponsible for such a separation. See Fig. 9 for
the transition on networks. A larger distance is
naturally needed in the network, since this cor-
responds to the actual one that people would
be travelling on to reach different places in the

Figure 1: Evolution of average cluster size re-
moving the largest cluster, for clusters with at
least 600 intersections. Method: percolation on
the intersection points.

urban system. It is expected that many of the
transitions will be given by natural geographical
barriers, such as National Parks or even islands,
as indicated by the map at d = 1020m, where
Snowdonia and the Lake District can be identi-
fied. So the transitions of interest are the ones
that are not the outcome of these geographi-
cal accidents. One such a transition can be ob-
served at d = 740m in Fig. 3. This transition
is extremely surprising, since there are no nat-
ural divisions, such as mountains or rivers, that
would create this split in terms of the infras-
tructure. In addition, it is not an artifice of
taking only the intersection points, since this
split is also present for the percolation directly
on the network. Such a split is very well known
to anybody living in the UK. It is a split that
has been around since Roman times, and that
corresponds not to a regional division of a ge-
ographical kind, but to a division of a social
kind. The right hand map in Fig. 3 illustrates
the split very clearly within the social context.
The black boundaries correspond to administra-
tive regional divisions called NUTS2 [33], and
the heatmaps correspond to different levels of
income per capita at the smallest geographical
unit for urban measures, called a ward1. The
country is clearly divided in terms of wealth,
and such a split is referred to as the North-
South divide.

1Scotland is excluded from this map, since the values
are from the 2001 census, and Scotland has a different
census to England and Wales.
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Understanding the natural emergence of re-
gions through connectivity in space dates back
to locational analysis in the 60’s [21]. These
ideas broke the paradigm of focussing on the
economic performance of regions in regional sci-
ence, by conceiving a regional organisation in
terms of the movement of individuals. In this
respect, this work might be seen as an extension
of these ideas. On the other hand, since the 30’s
there is the longstanding idea of subdividing the
space in terms of a hierarchical structure us-
ing population density [15], in addition to some
elaborated geometrical propositions [26]. In the
present work, the regional breaks are a conse-
quence of the density of the intersection points,
which can be seen to be in very good correlation
with population density. We will argue that this
is the case in the next section. No particular ge-
ometries need to be introduced though in order
to obtain the regions.

From the perspective of growth, the perco-
lation on the road network can be interpreted
in terms of road growth, if analysed from the
bottom up. Road growth is closely linked to
economic growth, and hence to regional devel-
opment. In this context the division in Fig. 3
might not be as surprising, indicating that re-
gional policy on infrastructure development is
closely associated with wealth.

The role of distance in terms of the hierar-
chical structure of urban systems has been ex-
plicitly outlined in [27, 12, 43], where the space
between settlements is shown to be highly cor-
related with the size of the settlements. Further
relationships between cluster size and functions
have also been explored with respect to a hi-
erarchical perspective since the 60’s [23, 10, 9].
In those earlier studies, the hierarchy outlined
different sorts of relationships according to size.
See for example early work [34] looking at the
hierarchical structure between regions through
its flow, in this case given by telephone calls.

Fractal properties
Given that we do not observe a transition

at which cities could be defined, we investigate
whether there are morphological properties of
the emergent clusters that give an indication
of more urbanised areas, corresponding to our
cities. Within the extensive research that has
been done in the area of the morphology of
cities, the fractal dimension can be singled out
as one of the most relevant [8, 7, 18].

Different sorts of clusters are obtained in the
two different methodologies, hence different ap-

proaches need to be taken in order to compute
the fractal dimension of its elements.
Clusters of intersection points

Until recently, a single fractal dimension was
employed. It is well recognised now, that a spec-
trum of fractal dimensions needs to be employed
to fully characterise systems that present dif-
ferent fractal properties at different scales and
regions [40], as is the case of urban systems
[2, 4, 24, 14]. These systems are called mul-
tifractals.

The traditional way to assign a fractal dimen-
sion α to a city is through the box counting algo-
rithm. Nevertheless, this measure is extremely
sensitive to the dataset and the implementa-
tion. In addition, it has been recognised that
cities are actually multifractals. In this respect
we compute the three well-known fractal dimen-
sions denoted by D0, D1 and D2, where D0 is
the capacity dimension, and in practical terms
it corresponds to the box-counting measure; D1

is the information dimension and it can be seen
as Shannon’s entropy; and D2 is the correlation
dimension, which is considered to be the most
accurate one. For the specific system at hand,
we need to extract the characteristic fractal di-
mensions at each distance threshold. We pro-
ceed by taking the average of the 100 larger clus-
ters of the above mentioned measures2, but we
relax the minimum cluster size to Smin = 50 in-
tersection points, so that we ensure that we have
at least 100 clusters at each distance thresh-
old. We set a maximum distance threshold of
d = 660m, since the percolation method clearly
returns regions beyond this distance threshold,
moving further and further away from a con-
figuration of cities. The results can be seen in
Fig. 4. We notice that all three dimensions show
a maximum at d = 160m. The urban system
defined in terms of the clusters at this max-
imum is in excellent correspondence with the
identified urbanised space given by the Corine
dataset [16]. In Fig. 2, the contours correspond
to the classified urbanised areas.

Let also compute the fractal dimension α of
the system in terms of the scaling relationship
between the mass and the radius of gyration of
the clusters. The mass is given by the number of
intersection points N and the radius is denoted
by rmax, see Eq.(1).

N ∼ rαmax (1)

2We ensure that the measures follow a normal distri-
bution through a Shapiro-Wilk test.
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Figure 4: Fractal spectrum of the 100 largest
clusters obtained from the percolation on the
intersection points.

We obtain the result given in Fig. 5. Oncde
again we observe that although the behaviour is
less smooth in this case, it still has a maximum
at d = 160m.

Figure 5: Fractal dimension computed accord-
ing to eq.(1) of the 100 largest clusters obtained
from the percolation on the intersection points.

Clusters of networks
For these clusters, we also compute the frac-

tal dimension in terms of eq.(1), where this time
rmax corresponds to the diameter of the net-
work. This is the same methodology that was
implemented in [20]. Note that for this system
we need to take a slightly larger maximum dis-
tance threshold d = 800m to ensure we are well
within the cities definition.

For this case the results show a maximum
around d = 300m, see Fig. 6. And once again
we see that the urban system defined at this
maximum is in excellent correspondence with
the definition of cities. See Fig. 9, where the
contours correspond to the urbanised areas.

In order to obtain a measure of how good the
correlation is, we take only the clusters such
that Smin = 600, since for this configuration

Figure 6: Fractal dimension of the whole urban
system defined through the scaling relationship
between mass and diameter for the percolation
on the network.

we have 584 clusters, and perform a correlation.
Fig. 7 indicates that the maximum of this cor-
relation is also at d = 300m.

Figure 7: Correlation of the clusters from the
network percolation with the boundaries of the
Corine dataset.

It is important to note that the distance is
not universal nor uniquely characterised. It is
not universal, because it depends on the nature
of the dataset. Hence a distance of d = 300m
might suit this specific dataset for Britain, but
might not suit another dataset, nor another Eu-
ropean country. It is not uniquely defined, be-
cause the maximum corresponds to some sort of
plateau. Hence any definition in the vicinity of
d = 300m would be as accurate or as inaccurate
as the one for d = 300m.
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Conclusions
We have shown that applying percolation the-

ory to the road intersections or the whole road
network allows us to obtain in a very simple way
the hierarchical structure of the urban system of
Britain. This formalism can be implemented in
incomplete datasets, and the level of detail that
can be extracted will depend on the granularity
of the data, nevertheless some information with
respect to the organisation of the urban system
can be recovered. This method can be extrapo-
lated to other spatial distributions, where data
is sparse. Some of the authors are implementing
this for archaeological data.

Comparing this method to the previous
method developed to consistently define cities
[3], this one allows us to define cities in a more
accurate way, since the threshold can be tuned
locally, contrary to the previous one, in which a
global population density was applied through-
out the space, and the level of precision was con-
strained by the geographical unit of a ward. A
further refinement of the percolation approach
can be found in [30], where each city is adjusted
to its condensation threshold. In this case we
observe that the global distance gives a repre-
sentation of cities that fits very well at least for
the bigger cities. We need to explore further the
level of accuracy.
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and Jürgen P. Kropp. Distance-weighted
city growth. Phys. Rev. E, 87:042114, Apr
2013.

[40] H Eugene Stanley, Paul Meakin, et al. Mul-
tifractal phenomena in physics and chem-
istry. Nature, 335(6189):405–409, 1988.

[41] D. Stauffer and A. Aharony. Introduction
to Percolation Theory. Taylor and Francis,
London, 1994.

[42] Emanuele Strano, Vincenzo Nicosia, Vito
Latora, Sergio Porta, and Marc Barthlemy.
Elementary processes governing the evolu-
tion of road networks. Sci. Rep., 2, 2012.

[43] E.N. Thomas. The stability of distance-
population size relationships for Iowa
towns from 1900 to 1950. Lund Studies
in Geography, Series B, Human Geography,
24:13–30, 1962.

7

http://arxiv.org/abs/1504.07380


Appendix
Algorithm for percolation on intersection
points

The algorithm is based on the geographical
location of intersections. We consider a pair of
intersections as connected if they are no more
than d meters apart. In order to reduce the
computational complexity of the procedure, the
actual analysis is performed using a grid of
squared cells (10x10 meters each). A cell has
one of two values: 1 if at least one intersection
is within its area or null if it contains no inter-
sections. As the percolation analysis is based
on distance, we calculate a distance grid where
each cell is assigned the distance to the closest
cell that contains an intersection. We use this
grid in the percolation procedure.

The percolation procedure for a distance d
consists of the following steps:

1. Each cell of the distance grid that has a dis-
tance value of d meters or below is marked
as 1 otherwise, it is marked as null.

2. A unique identifier is assigned to each con-
tinuous set of marked cells. A cell is consid-
ered adjacent to its four nearest neighbours
(i.e., its von Neumann neighbour).

3. Each intersection is assigned the unique
identifier of its containing cell.

The method is implemented in ESRI ArcMap
10.1 using the following tools:

• The intersection grid is created using the
Points to Raster tool.

• The distance grid is created using the Eu-
clidian distance tool.

• The marked cells grid is created using the
Raster Calculator tool.

• The unique identifiers grid is created using
the Region Group tool.

• The unique identifiers are copied to the in-
tersection points using the Extract Values
to Points tool.

Algorithm for the network based percola-
tion

Given a graph of the road network, where
nodes represent intersections and the weight for
each edge is the length of the street that con-
nects them and a certain metric threshold (e.g.
5000m) we produce a network percolation by:

1. Selecting the transition of the graph with
the smallest weight (distance), generating
a new cluster and inserting both its nodes
into the cluster.

2. We will keep a first-in first-out queue of
nodes to expand, from which we will extract
a node to continue the process. We add
both nodes of the transition selected in step
1 to this queue. Nodes are only added to
this queue if they are not already included.

3. Extract a node from the queue of nodes to
explore and if a transition departing from
that node (not yet included in the cluster)
is smaller than the threshold, include the
transition in the cluster and the end node
of the transition in the queue of nodes to
explore.

4. Repeat step 3 until no further node can be
expanded (the queue is empty) and if there
are transitions left in the graph that do not
belong to any cluster, generate a new clus-
ter by choosing the smallest available tran-
sition and repeat from step 1.

Results for the percolation on the net-
work

Figure 8: Evolution of the average cluster size
removing the largest cluster, for clusters with
at least 600 intersections. Method: percolation
on the network.
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Figure 2: Maps of clusters at some distance thresholds, for the percolation on the intersection
points. Only the 10 largest clusters are depicted.
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Figure 3: Right: map of Britain at d = 740m; left: map of England and Wales with regional
divisions given by NUTS2, and heatmap of income at the ward level.
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Figure 9: Maps of clusters at some distance thresholds for the network percolation. Only the 10
largest clusters are depicted.
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