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Abstract 
 
This chapter introduces a class of spatial probability distributions which depart from 
the normal distribution which is the baseline for conventional statistics and the point 
of departure for spatial analysis. The distributions we explore are skewed, their tails 
are heavy or fat rather than thin, and they often manifest extreme skews to the right 
or left or both. They consist of many objects which are small and few which are big, 
and their genesis is through processes of competition that sort these objects into 
distributions that can be approximated by power laws. City size distributions are the 
classic exemplars and we illustrate these using cities in the US urban system whose 
distributions show dramatic aggregate regularities from decade to decade. However 
when we examine the constituents of these distributions – individual cities – these 
move up and down the distributions very rapidly showing equally dramatic volatility. 
This is a puzzle that has yet to be explained – why aggregate distributions are so 
stable but their components are so variable. Here we illustrate these ideas by 
visualising such movements using various mnemonics such as the rank plot, the rank 
clock, and  temporal statistics related to the half lives of the objects that compose 
these ranks. We conclude by visualising these distributions and their dynamics with 
respect to their spatial locations.  
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1 The Properties of Spatial Probability Distributions 
 
Many variables in spatial analysis are distributed as probabilities that reflect 
competition between the elements, objects or individuals that compose them. 
The typical form of such distributions is quite unlike those which evolve with 
no direct competition between their elements with these being normally 
distributed in that there are quite low numbers of both large and small objects 
and high numbers of objects that are of moderate size. Such distributions have 
well defined means and are usually shaped with respect to their frequency and 
size as bell-shaped curves where most of their elements – at least 95% - lie no 
more than two standard deviations on either side of their mean. The best 
examples in the human sciences relate to attributes of ourselves – our height, 
our weight, and other physical characteristics which evolve slowly with no 
significant interpersonal competition but according to random mutations which 
change these attributes over many generations. In contrast, when we examine 
socio-economic characteristics of ourselves, for example our incomes, we find 
that this variable is distributed with a very heavy skew to the right, where most 
of the elements or individuals forming the distribution have small incomes and 
an increasingly small number have large.  If we define the size of each 
individual i  as ix  which is height, say, its frequency )( ixf  is distributed 

according to ])(exp[~)( 2xxxf ii   where   is a parameter and x  is its 

mean. These normal distributions are much rarer in spatial analysis than those 
that are highly skewed such as income which can be approximated using power 
laws which have frequency as 

ii xxf ~)(  where   is the relevant parameter. 

 
Although skew distributions are ubiquitous in spatial analysis, our detailed 
understanding of how competition orders the elements in these distributions, is 
quite rudimentary, based on random mechanisms or at best theoretical models 
that operate under tight constraints on where objects can locate and grow in 
space (Clauset, Shalizi, and Newman, 2009). For example, the most accessible 
point in a circular market area is its centre and the number of locations with 
lesser accessibilities increase geometrically as one travels further and further 
from the centre. Thus if we then rank order these accessibilities by location, the 
greatest frequencies are the lowest and as accessibility which is a proxy for size 
increases, the number of locations successively decreases (Batty, 2013). We do 
not need to demonstrate that this is a power law just as we do not need to show 
that human characteristics are always exactly normally distributed. All we seek 
to do is argue that typical spatial distributions are skewed, usually to the right 
although we can order these both left and right dependent upon the 
representation of space that we adopt. These probabilities can thus be 
approximated by wide class of skew distribution functions of which the power 
law is perhaps the simplest exemplar (Simon, 1955). In fact the power law has 
particular properties that make it even more attractive in that it tends to be 
applicable to systems that scale, that manifest self-similarity at different scales, 
and which can be generated as fractals. It is easy to see what this means with a 
simple power law of the kind we have already noted. If the size variable ix  is 

scaled by a factor K , then its probability distribution scales as 
)(~~)(~)( iiiii xfxxKKxKxf    . These are important properties that 
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relate to how we might represent and simulate spatial systems but they lie 
beyond the scope of this chapter (Batty and Longley, 1994). 
 
Although most spatial analysis has focussed on transforming and searching for 
variables that approximate normal probability distributions, there is an even 
more important problem when we examine these distributions over time. 
Although it would appear that many skew distributions are stable with respect to 
their skewness when observed at different points in time, even over quite long 
time intervals, the objects that compose them are seldom fixed. In fact they 
often change quite radically over quite short intervals of time but their overall 
distributions can remain quite stable. We will explore these issues in depth in 
this chapter but they pose an enormous conundrum with respect to how we 
explain the way human and socio-economic phenomena organises and self-
organises itself in space. Spatial distributions that remain comparatively stable 
with the respect to how cities are organised appear to achieve a macro regularity 
in their form from one time period to the next but at the same time, they admit 
rather basic volatility between the elements that make up such patterns. Not 
only do we need to represent how spatial probability distributions are skewed in 
a stable and regular fashion, we need to explore how such distributions 
continually change in their individual elements while at the same time 
preserving this macro regularity. 
 
Let us state this paradox in starker terms: if we rank a set of cities by their 
population sizes that describe some sort of integrated regional or national 
system, the distribution tends to follow a power law which has strong regularity 
across many time periods. In fact this regularity is unerringly strong so much so 
that Krugman (1996) was prompted to say: “The size distribution of cities in the 
United States is startlingly well described by a simple power law: the number of 
cities whose population exceeds P  is proportional to 1 / P . This simple 
regularity is puzzling; even more puzzling is the fact that it has apparently 
remained true for at least the past century.” However if we were to examine the 
size distributions and the cities that compose them at any two times, we would 
find that cities move quite quickly in terms of their ranks (and of course their 
sizes).  Taking the two distributions of cities in the US in 1890 and 1990, in 
1890 New York City was number 1 as it was in 1990. But Houston was not in 
the list of the top 100 cities in 1890, yet it had reached number 4 by 1990. In 
terms of the top 50 cities in the world at the time of the fall of Constantinople in 
1453, only 6 remain today. This micro-volatility in the face of macro-stability 
implicit in the power law is puzzling to say the least in that we do not have good 
theories of why city systems can maintain their aggregate stability while at the 
same time shuffling the objects that make up this stability in such a way that the 
overall scaling appears almost static. It clearly relates to competition between 
the objects in some way that suggests that the relative size of any object is 
always constrained by some upper resource limit that remains largely undefined. 
 
In this chapter, we will first state the nature of the power law, examine its 
properties, and then explore the archetypical example due to Zipf (1949) who 
was the first to draw popular attention to the distribution of city sizes in the 
United States. We will introduce various visual mnemonics, in particular the 
rank clock which will enable us to explore micro changes in the city ranks that 
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nest within the wider regularities associated with these size distributions. We 
will illustrate different trajectories and morphologies that compose these 
visualisations and this will provide us with the background to attempt a 
rudimentary classification of rank clocks which details their particular 
dynamics. We will then extend our analysis of the US urban system using data 
for the metropolitan statistical areas (MSAs) from 1969 to 2008, and follow this 
with an examination of scaling in high buildings – skyscrapers – in New York 
City. High buildings are distinguished by the fact that newer buildings tend to 
be higher than old while a building rarely declines in height due to the fact that 
high buildings tend to be demolished if they are changed at all. This poses a 
rather different dynamics that produces somewhat different patterns through 
time. We then examine the change in scaling associated with hubs in a network 
whose sizes are based on the number of travellers moving through these 
locations at different times of the working day. Our illustrations of dynamics 
will all be related to changes in ranks exploiting the idea of how ranks change 
over time where time is displayed as a clock organised not on the 12 hour cycle 
per se but one which is calibrated to the time periods over which the dynamics 
is considered (Batty, 2006). In conclusion, we will argue that the real puzzle is 
to unpack the way spatial competition which organises these patterns into 
strongly regular size distributions, gives rise to a continual shuffling and mix of 
cities as they move up and down the size distribution. 
     
 
2 Power Laws Explained, Rank Clocks Defined 
 
As Krugman (1996) noted, the size distribution of cities in the United States 
follows the simplest power law where the size of a city P  varies in inverse 
proportion to its rank r  as 1~ rP . Expressed in terms of frequencies as a 
probability distribution, the frequency of the occurrence of a city of size P  is 

2~)( PPf  which is the derivative of the previous rank size expression. This 
kind of manipulation is quite simple but it is worth noting that much confusion 
arises with power laws and rank size because different authors use one or other 
of these equations and the discussion as to the actual value of the power can 
become obtuse. In fact the idea that the power of the rank exactly equals 1 or the 
power of the frequency 2 is an ideal type although it does appear to be the 
consequence of a system developing competitively but randomly to a steady 
state (Gabaix, 1999). A more generic form however is to assume that the 
probability which we introduced above is PPf ~)(  with its rank size form as 

)1/(1~  rP . 
 
This power law is often contrasted with the Gaussian (or normal) distribution 
which is symmetric about its mean and is bell-shaped with two very thin tails 
covering the smallest and largest objects in the size distribution. As we noted 
above, power laws essentially have long or fat tails that are skewed either right 
or left or both but in this context are usually skewed to the right where the long 
tail contains the largest objects for which there is no bound. Again there is 
confusion over fat, thin, long and heavy tails in the literature but here we will 
cut through all of this and begin with various city size distributions in the 
United States for the year 2010. Before we focus on dynamics, we will examine 
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two data sets, the one equivalent to that used by Krugman (1996) and Zipf 
(1949) before based on cities defined by the US Bureau of the Census and one 
based on metropolitan statistical areas (MSAs) defined by the US Office of 
Management and Budget. We show these distributions as rank (counter-
cumulative frequency) size in their untransformed and transformed form (as 

ii rKrP loglog)(log   where )1/(1   ) in Figures 1(a) and (b). The 

MSA data covers metro areas which are more than 4 times as large as the US 
Census cities data which are based on counties. The plots shown in Figure 1 and 
their estimates have slopes somewhat lower than the pure Zipf parameter of 
unity, being 0.726 for the cities and 0.862 for the MSAs. Note that Krugman 
(1996) estimates this slope for the top 40 US cities he selected from 1990 data 
as 1.004 which simply shows that the set of cities chosen and their areal extent 
can make a substantial difference to these estimates. This suggests that there is 
no best theoretical value for this parameter with respect to real distributions and 
all of them are intrinsically affected by the noise associated with empirical 
definition (Cristelli, Batty, and Pietronero, 2012). 
 

a b 

 
 

Figure 1: Rank Size Distributions for MSAs and US Census Cities 2010 in  
a) Power Law Form and b) Logarithmic Linear Form 

 
If we examine how these rank size relationships change through time, there is 
quite remarkable regularity in that the powers vary very little, notwithstanding 
there might appear some drift in their values. The best data set we can use to 
show this is the data on cities from the US Census which we have for the top 
100 cities from 1790 to 2000. The rank size distribution appears extremely 
stable as we show in Figure 2(a) as Krugman (1996) so clearly remarked in our 
quote above. But these regularities, remarkable enough in themselves, begin to 
unravel when we examine the individual cities that make up these ranks. If we 
plot the shift in ranks, there is considerable movement of cities in terms of their 
size and rank up and down the hierarchy. In Figure 2(a), we also display one 
measure of this shift by plotting the year 2000 city sizes according to the 1940 
ranks and one can see that the smaller sizes tend to shift more than the larger. In 
fact these shifts are not complete because some of the cities at 1940 are no 
longer in the top 100 ranked cities in 2000; in fact by then the number of cities 
that are common to both dates has reduced to 60.  
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We can enhance this by noting the cities that are in the top 100 ranks over the 
210 year period from 1790, can be displayed individually by plotting their ranks 
and colouring them according to spectrum that begins with red and transitions 
through to yellow, then green to blue as cities appear in the ranking (using the 
typical heat map convention). So the first city at the top rank in 1790 is coloured 
red and the last city to appear in the ranking over the next 210 years is coloured 
blue with the transition evenly spaced according to the heat map colour 
spectrum. We show this for what we call the rank space which is the size versus 
rank graph – the so-called Zipf (1949) plot – in Figure 2(b) but this is a 
particularly messy form in which to visualise more than a few objects that 
comprise the distribution. What this plot does show however is that there are 
several very distinct trajectories defining the space: for example cities that shoot 
into the space from outside the top 100 towards the top and vice versa, cities 
that remain at the same rank defined by vertical lines on the plot, cities that 
oscillate up and down in terms of rank and so on. 
 

a b 

  
 

Figure 2: Rank Size Distributions (a) Rank Shift, and (b) Changes to Individual 
Cities in the Rank Space from 1790 to 2000 

 
A much better mnemonic is to make time explicit and to suppress size for after 
all, rank is a synonym for size and if the focus is simply on relative position, 
then rank and time are somewhat more illustrative of volatility in the Zipf plot 
than rank and size (Batty, 2006, 2010). What we do is to plot time as a regular 
clock around its circumference defining the beginning of the time in question – 
in this case 1790 – at the noon-midnight position with the years running in the 
clockwise direction around the clock until the hand reaches back to noon-
midnight at the end of the time period in question, in this case at the year 2000. 
We can then plot the rank of the city as a radial from the centre of the clock at 
the appropriate time where we can organise the radial from rank 1 at the centre 
to rank 100 (or whatever is the upper limits of rank) on the circumference, or 
the other way around, using a linear or logarithmic scale. Here we will use the 
simplest linear scale with the highest rank at the centre of the clock and the 
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lowest on the circumference. For our 210 year city size distribution taken for the 
cities defined in the US Census, we show some typical trajectories which 
compose part of the rank clock in Figure 3(a) where it is clear that different 
cities are associated with quite different trajectories. We will return to this in the 
next section where we argue that the clock and its derivatives can be used to 
think visually about the nature of dynamics in systems that scale. 
 
What is fascinating about this particular clock is that this defines the temporal 
signature of the development of the US urban system. New York City is the 
anchor of the clock being number 1 in rank ever since the Census began in 
1790. In some respects, the city is the fulcrum of the entire American system. 
The opening up of the mid-west, California and the south is also marked out 
with first Chicago (around 1840), Los Angeles (1890), Houston (1900), then 
Phoenix (1950) flying into the clock from outside the top 100. Several colonial 
towns established in the 18th century and before such as Charleston (SC) lose 
rank and fall out of the top 100 while some colonial settlements in the vicinity 
of Washington DC and the northern part of the south lose rank and then begin to 
stabilise as sprawl makes an impact post world war 2. Rustbelt cities such as 
Buffalo (NY) lose rank systematically from the early 20th century onwards. 
There are few cities that enter and leave the top 100 in any significant way but 
some such as Atlanta zoom in only to lose rank as they stabilise although to an 
extent, boundary changes and suburban sprawl complicates the picture. We 
have not attempted any classification of different trajectories so far but the 
prospect exists for such analysis in future work.  
 

a b 

 
Figure 3: The US Rank Clock Defining (a) Key City Trajectories, and  (b) Cities 

Ranked in the Top 100 from 1790 to 2000   
 
We also illustrate the complete rank clock for all cities that are in the top 100 
from 1790 to 2000 in Figure 3(b). Many cities enter and leave this exclusive set. 
Before 1840, there were less than 100 cities catalogued in the US Census, and 
thus the rank clock in Figure 3(b) shows this build up. We have not normalised 
any of these cities for boundary changes, so our analysis is inevitably crude. 
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Moreover, although after 1840, there are only 100 cities ranked at each time 
period, in fact over the 210 year period there are 266 cities that are part of the 
top 100, and this is itself a measure of the volatility of the set, with there being 
2.6 times the number of cities appearing in the top 100 over this period. If these 
cities entered and left the top 100 uniformly, this would mean that on average, 
about 8 cities would enter and leave the top 100 each time period, about 8% per 
decade. What Figure 7(b) clearly illustrates impressionistically through the 
collage of various trajectories (by their colour) is the substantial volatility of the 
US system over two centuries. Of the cities in the top 100 in 1840, only 20 
cities remained in the top 100 by 2000, consistent with a rate of change of cities 
being in the top 100 of about 8% per decade.  
 
 
3 Trajectories and Morphologies of the Rank Clock 
 
The morphology of the clock is composed of a collage of trajectories of each 
object, in this case a city, with the trajectories themselves being of different 
types which we illustrated briefly in Figure 3(a), and their intersection forming 
the overall form of the clock with gives it a distinct morphology as in Figure 
3(b). Clock-like trajectories can thus be classified into types although we will 
only concentrate on the simplest here. First we show different trajectories. If an 
object always remains at the same rank, then it will trace out a circular 
trajectory on the clock with objects at higher and higher ranks producing 
smaller and tighter circles to the point where the object is always at rank 1 
which is a point at the centre of the clock. Objects which slowly enter the clock 
and move up towards its centre form inward spirals whose curvature relates to 
the inverse of the speed at which the objects move up rank. Objects which spiral 
out of the clock and lose rank perform in the opposite way. The most difficult 
objects to classify are those that move up and then move down, perhaps even 
moving in and out of the clock (which always has an upper bound on the 
number of ranks considered). Objects which oscillate around the clock and stay 
within it in a regular pattern are more unusual but as we will see, when we look 
at the clocks of transport movements, such oscillations can be seen relating 
activities to 12 hour, diurnal, weekly and related temporal patterns. In Figure 4, 
we show typical examples of these trajectories. 
 
 

stable ranks: at rank 1, and at 
rank 125 

directly entering at rank 1, 
directly exiting from rank 1 

spiralling in from rank 250 
towards rank1 

spiralling out from rank 1 
towards rank 250 

 
 

Figure 4: Classic Changes in Rank Defining Idealised Trajectories 
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When we generate a collage of these idealised trajectories, we define different 
morphologies that we can use as baselines to which we can compare real data. 
First for objects that remain at the same rank throughout the temporal period, 
we define a series of concentric circles starting at the pole of the clock and then 
splaying outwards. To demonstrate this morphology, we have generated an 
idealised distribution of objects from a power law where trrPt ,/1~)( . This 

produces a distribution that declines with rank but is identical for all time 
periods; that is, the object that is ranked r  at time t , has the same rank 

  ,t . We show the rank size distribution in Figure 5(a) and its logarithmic 
form where the slope is equal to 1 in Figure 5(b). The rank clock is shown in 
Figure 5(c) where the colouring of these trajectories is based on the rule defined 
earlier which reflects the red-yellow-green-blue spectrum ordered according to 
the time and the rank when the object first appears in the series.  
 
 
a b 

 
c d 

 
Figure 2: An Idealised Rank-Size Distribution based on Zipf’s Law (a, b), its 

Rank Clock (c), and (d) a Plot of Its Half Life 
  
Above we examined the shift in ranks between two points in time by showing 
the distribution at the first point in time using ranks from another. There are 
however many different statistics that we will relate to these dynamics but here 
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we will look at only one: the half life, so-called because it gives us the number 
of objects at a given time t  and t  that still exist in the rank size 
distribution for any time t . The half life for the downswing t  is the number 
of years 

t  when the number of objects is 2/n , while for the upswing t  

this is 
t  but of course these can be different. The overall half-life of the entire 

system for the upswings and the downswings can be defined as the average of 

the sum of these values over all years T  which are  
 

T

t t T
1
  and 

 
 

T

t t T
1
  while the average for the total system based on up and 

downswings can be formally defined as 2)(    .  Now in our clock with 
stable ranks where nothing changes over the entire time period T , the number 
of objects in the distribution at any time t  is the same as the number of objects 
at t  and t  and thus there is no point where the number of objects drops 
to one half of those at a given time. This is illustrated in Figure 5(d) where the 
number of objects in the top ranks is plotted on the vertical axis against time on 
the horizontal axis. Note that for all these hypothetical explanations of 
morphologies and trajectories, 250n  and 250T , and the number of objects 
n  is the same at each time t .  
 
Now if we assume that each object in the distribution enters the distribution at  
top rank 1 at time t  and moves to the bottom rank 2 at time 1t  implying that 
there are only ever two objects in the distribution, then the clock is displayed in 
Figure 6(a) where it is clear that it consists of a series of spikes. The half life is 
quite straightforward because the number of objects at any time in the 
distribution is 2 with one of these objects generated at the previous time period, 
thus the half life (which is only defined for the downswing) is 1 year. We show 
this in Figure 6(b) where the graph shows the number of objects which pertain 
to any time t  which is 2 and only one of these remains at time .1t  
 
a b 

 
 
Figure 6: the Rank Clock based on (a) an Extreme Rank-Size Distribution and 

(b) a Plot of Its Half Life 
 
We will now examine two other idealisations. First a distribution where an 
object enters the rankings at number 1 and then systematically declines until it 
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reaches the lowest rank, one position at a time at the end of its life. The number 
of objects builds from 1n  to 250 and thus the last object 250n  that enters 
at position 1r  at 250t  starts and finishes it life at this point. The rank clock 
of this structure is shown in Figure 7(a) and its half life plot is a simple set of 
lines from the time when each object enters. In fact, the number of objects 
builds up linearly during the 250 time units and although the first ranked object 
declines to rank 250 by the end of the time period, all objects remain in the 
distribution across all times and thus no half life can be defined as such. The 
second distribution is one where the object enters at rank 1 and stays there but 
new objects then enter, one at each successive time period. The half lives are the 
same as all objects remain in the top ranks and the relevant rank clock is shown 
in Figure 7(b). 
 
a b 

 
Figure 7: Rank Clocks based on Successive Objects Entering at Rank 1:  
(a) Declining According to Zipf’s Law and (b) Remaining in Stable Orbit 

 
Our last ideal type involves each object rising from the lowest rank to the 
highest then declining again to the lowest, and of course dropping out of the mix 
if the temporal period is beyond the cycle associated with the object. This in fact 
is a mix of the previous two types of morphology. We begin with the top ranked 
object at rank 1 and then this loses rank until it disappears at the end of the 
temporal period. The object with the lowest rank at time 1 gradually rises in 
rank to its maximum and then begins to decline. In fact this order from lowest to 
highest to lowest is associated with each object in sequence and the way we 
must illustrate this is according to the clock in Figure 8(a). This is complicated 
because of the way the colours mask the true process but if we examine Figure 
8(b), we see that at the beginning of the period, the highest rank marked in red 
declines as an outward spiral to the end of the period. The lowest ranked object 
at time 1 increases from rank 250 to finish at rank 1 at the end of the time 
period. This defines the bounds of the trajectories defining the clock. If we take 
the object which exists at rank 125 (coloured green) at the beginning, this rises 
to rank 250 in an inward spiral reaching this at time 125 and then it spirals out 
to rank 125 again at time 250. We see these trajectories in Figure 8(b). One 
really nice feature of this clock is that we can consider the first object as 
spiralling out of the clock from rank 1 to 250 (in red) and then spiralling back 
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into the clock connecting up to the initial object at rank 1 at the next time 250 
(or time 1). This is only clear from the three trajectories in Figure 8(b). The half 
lives of all these objects are not defined as all objects remain in the distribution 
over all time periods. If we were to plot these, then this would be the same plot 
as in Figure 5(d).  
 
a b 

 
Figure 8: Rank Clocks based on (a)  Successive Objects Entering at All Ranks: 

(b) Plots of Cities Entering at Ranks 1 (red), 250 (blue), and 125 (green) 
 
 
4 The Dynamics of Cities, High Buildings and Transport Hubs 
 
To complete this analysis of city systems, we will return to the first data set that 
we examined earlier for population associated with the 366 MSAs, and we will 
extend this to also include total income for each MSA. We have assembled 
these data in the time series from 1979 to 2008. Its great advantage is that the 
MSA boundaries are stable and the set of cities is complete, thus implying that 
the growth dynamics associated with changes in size and rank is clearer than 
that of the 100 top ranked cities from the US Population Census data. In Figure 
9, we show the rank size distributions associated with the population and 
income measures for the 366 MSAs. These are at a much finer temporal interval 
than those we examined from the Population Census and thus any measures of 
shift need to be normalised if comparisons are to be made. In Figure 9(a) and 
9(c), we show the rank size distribution for population and income. These are 
extremely close to one another but when we examine their individual clocks in 
Figures 9(b) and 9(d), these show more volatility. Nothing equivalent to the 
volatility for the city size distributions from the Census is seen in these 
distributions but the time period is much shorter and the urban system is much 
more mature. In fact the population clock implies that the core cities remain as 
core but that there are several smaller cities that rise up the hierarchy while a 
few established cities drift down more gradually. Of course this clock implies 
changes in rank not size so although Phoenix which is ranked 35 in 1969 
increases its rank to 12 in 2008, it more than doubles in size. In fact Houston 
increases its population almost three times while its rank goes from 14 to 6. In 
the mid range of the hierarchy, Las Vegas increases its population from about 
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267,000 to 1.87 million, some 7 times, and its rank from 114 to 30, some 3.8 
times. These are substantial shifts given the fact that the system is mature, with 
a growth rate in metropolitan populations of only around 0.5% per annum.  
 
a b 

c d 

e f 

 
Figure 9: Population, Income and Income Per Capita: (a, c, e) Respective Rank 

Size and (b, d, f) Rank Clocks for 366 MSAs from 1969 to 2008 
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When we examine the income distribution, there is more volatility with one 
very obvious shift in income due to oil being discovered in Fairbanks, Alaska in 
the late 1960s. There was a boom in pipeline and related infrastructure 
construction in 1975-1977 leading to a big increase in income and then the local 
economy collapsed back to its former trajectory. This is clearly seen in the 
income rank clock in Figure 9(d). The last distribution relates income to 
population as income per capita and the rank size and its clock are shown in 
Figures 9(e) and 9(f). These is considerable mixing implied by this clock despite 
the impressively smooth macro distributions with respect to their form over 
time. Quite clearly as we form composite distributions by taking ratios of more 
basic data, then the noise from one combines with the other and differences – 
variances – can become magnified. There is in fact little experience of such 
mixing and we lack real intuition as to what are its consequences. But it is 
enough to cast doubt on many of the more stable and regular relationships that 
we often begin with such as power laws and this suggests that our knowledge of 
this whole area is primitive and subject to more profound scrutiny than anything 
that we have attempted so far.  
 
There are many systems where competition in space and time determine how 
their constituent elements grow or are manufactured in size. If we disaggregate 
populations and examine the internal distribution of such clusters in cities, we 
have already seen that these intra-urban elements follow power laws, albeit with 
considerably more noise associated with their spatial and temporal arrangements 
than entire cities. If we now divert our attention from actual amounts of such 
activities to the physical environment which accommodates them – from people 
to the buildings in which they reside or work – we also find that the sizes of 
these buildings follow power laws. In fact if we examine high buildings, which 
are usually defined as being greater than 6 stories, certainly greater than 10 
(which require elevators for their operation), then their distribution can also be 
shown to follow the rank-size rule. There is a major difference between high 
buildings and population sizes in that buildings do not grow or decline – at least 
in the same way as populations; they are manufactured and rarely are stories 
taken off them through partial demolition and rarely are they added to.  
 
There are exceptions of course but in our analysis here we will exclude these 
occasional cases. Buildings do get demolished but in our analysis we have 
excluded these too for we will illustrate these ideas only on extant skyscrapers – 
buildings greater than 40 metres – in New York City from the year 1909 until 
2010 also measuring their height in metres. There are 516 buildings in this set 
but we will only ever plot the top 100. In fact the rank clock is quite different 
from that for cities. As the century progresses, a building which is number 1 in 
rank does not stay there for long. Skyscrapers have got successively higher as 
building technologies and materials have progressed and thus the rank clock is 
marked by a continuing downward spiral of earlier high buildings, many of 
them leaving the top 100 during the 101 years that the clock portrays. We show 
the clock in Figure 10(a) and the downwards spiral provides the dominant 
morphology of these dynamics. In fact at the start of the clock in 1909, there is 
rapid growth to 119 high buildings ‘in the top 100’ because there are several ties 
for height but the rest of the clock is contained within the envelope of 100.  
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Figure 10: New York City Skyscraper Heights: 1910 to 2000: a) Rank Clock 
and b) Number of Buildings Defining the Half Lives at Each Time   

 
The other feature of this dynamics is that the clock shows quite distinctly the 
waves of skyscraper building that have dominated New York. At the start of the 
period in the early 20th century before the first world war there was a great wave 
of such building. Then again after the war in the mid 1920s to early 1930s, the 
boom, which preceded the great recession, was a time of massive investment in 
high buildings. In fact the highest buildings in the city which still dominate the 
skyline like the Empire State and Chrysler buildings were constructed then and 
if you look at the core of the clock – the top 10 ranks – you will see that these 
are dominated by buildings (coloured green) which were constructed in the 
1930s. In fact earlier buildings are overwritten at the level of resolution used in 
the clock and some of the early high buildings such as the Woolworth building 
only reappear, due to the visual limitations of the clock, once the 1930s wave of 
building subsides. There are waves in the 1960s and 1980s and then more 
recently in the 2000s but buildings in general have not been much taller then 
those built in earlier times. It is elsewhere in the world where the highest 
buildings have been built recently, in the Middle East and in China. 
 
An even more graphic demonstration of these dynamics is given by the plot of 
half lives for the 101 years that comprise these competitive processes which are 
firmly linked to boom and bust. In Figure 10(b), we show these half lives where 
it is clear that the dynamics produces clusters that relate to specific ‘economic 
events’. Remember that the half live for the set of one hundred buildings that 
exist at a given point in time, is the number of years between the time in 
question and the time when only half the number of buildings at this time 
remain in the system. We can of course compute half lives for buildings that are 
entering the system as we indicated earlier and these ultimately compose the 
100 in question. This is often different in time span from those that are leaving 
the system, being knocked out by higher buildings being constructed where the 
progression is often slower. The times of rapid building are clearly picked out 
by the half life plots in Figure 10(b) where the 1910s, 1930s, 1950s, 1960s and 
1980s and 2000s are periods of very rapid growth in high buildings with half 
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lives on the upswing much shorter than the downswing which are more 
subdued. In fact this figure shows how hard it is to produce an average half life 
for the entire series. In fact for periods of rapid growth (boom), the upswing half 
life appears to be about 4 years whereas the subsequent downswing is about 25 
years. Also the downswing half life seems to be shortening whereas the upswing 
is less variable. Overall we estimate that the average upswing half life to be 
about 10 years and the downswing 20 years but the volatility and the dominance 
of booms and busts complicates the picture. 
 
Our third example refers to the size of hubs in spatial networks. It is very clear 
that the evolution of networks is governed by competitive forces that enable a 
limited number of hubs to gain more than proportionate numbers of links. 
Translated into volumes of activities flowing on such links into hubs, this gives 
rise to distributions that are similar to power laws. This was first demonstrated 
by Barabasi and Albert (1999) but it pertains to many developments in network 
science pioneered during the last 20 years. There is some debate as to whether 
or not these distributions are scaling for their derivations using laws of 
proportionate effect tend to generate log-normal distributions but as most of 
these distributions are modelled with respect to their heavy tails, then power 
laws can form a good approximation to these. Moreover there are likely to be 
more constraints on the form of these distributions due to the fact that spatial 
networks are constrained in space and cannot generate the numbers of links that 
are generated in unconstrained network structures. In short, planar graphs which 
dominate spatial networks do not manifest scaling in their pure form 
(Barthelemy, 2011). 
 

a b c 

 
 

Figure 11: Sizes of London Station Trip Volumes (November 2010)  
 a) Rank Size b) Collapsed Rank Size, and c) Rank Clock 

 
Our example constitutes the hubs that define the rail stations on the London 
underground and overground where the volumes of travellers entering and 
exiting these hubs define their size on a typical weekday in November 2010. 
The dynamics of these hubs relates to the fact that during a typical day, all the 
hubs only operate for 20 hours for the system is closed from 1-20am to 5-20am 
each day. The dynamics is also dominated by the morning peak and the evening 
peak hours and the volumes reflect this. We have organised the data which is 
available on a second by second basis into bins of 20 minutes each, of which 
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there are 72 defining the 24 hour day. 12 of these are empty as there are no 
trains running. There are a total of 6.2m entries and 5.4m exits (the difference is 
due to open barriers where the RFID (Oyster) card from which the data is taken, 
is not used) and we will aggregate these entries and exits to form the volumes 
for each of the 666 hubs that define the system. 
 
We show the 60 different rank size distributions in Figure 11(a) where it is clear 
that the differences pertain to different volumes at different times of the day. 
The dominant cluster of trips is during the two peaks that are clearly evident in 
Figure 11(a) but the shape of these distributions is quite similar at each 20 
minute interval as we show in Figure 11(b) where they are collapsed onto one 
another. We achieve this by taking the distributions from their mean size and 
normalising by their variance so that they are comparable. It is also clear from 
Figures 11(a) and (b) that the distributions are not scaling but are much closer to 
lognormal. We show the clock in Figure 11(c) from which it is clear there is 
enormous variability in the way hubs move up and down in the hierarchy of 
ranks during the day. What we see from this is that some hubs that have low 
volumes early in the day pick up in the morning peak and then collapse back in 
the middle of the day to rise again in the evening peak. These are inner 
suburban hubs whereas those in the central business and shopping districts tend 
to remain the biggest during the whole day and close down last. To really 
explore the meaning of these dynamics, it is necessary to know the actual spatial 
configuration of rail lines and hubs and to this end, the Rank Size Visualiser 
that we introduce in the next section indicates how one can make progress in 
generating much more satisfactory explanations of these spatial network 
dynamics. 
 
 
5 Next Steps: The Rank Clock Visualiser 
 
We have developed a visualiser (O’Brien, 2014) for these kinds of scaling 
distributions that enable the user to link the objects in the clock to their spatial 
location. The user can generate a rank clock for many different distributions 
which so far are confined mainly to city size and building height distributions 
but do include Fortune 500 data from 1955 to 2010 (with renormalisation in 
1994-5) and the distribution of US baby names. The London tube hubs are in 
the set as are several distributions of UK, US and Japanese populations by small 
area/cities. Users can plot the rank clock with the highest rank at the centre or 
the edge, choose any time periods from the maximum available for each data set 
and identify specific objects by name on the clock and map. The link to the 
spatial distributions uses either Open Street Map or Google Earth and the user 
can point to either a city or object on the map or globe or on the rank clock and 
its equivalent in clock, map or globe will show up. There is no animation of the 
clocks so far in this interface but this will be done in time for there are many 
easy extensions like this. 
 
In the data set, we have world city sizes from the Population Division of the UN 
Department of Economic and Social Affairs from 1950 to 2010 (some 576 in 
all, greater than 1 million population each). We show the rank clock of these in 
Figure 12 from the Rank Clock Visualiser where we have picked out Adelaide 
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in South Australia, a good example of a 1 million population city that is stable 
in population but declining in rank. The Google Earth display alongside lets the 
user visualise all these cities and their sizes and a user can click on a city and 
see where its trajectory lies on the clock or identify the name of the city from a 
drop down list and activate its trace on the clock and on the map or globe. It is 
not yet possible to zoom into the clock to identify a hot link to a trajectory 
because the level of resolution is too fine from the static display but all these 
extensions are possible and will be explored in future work. The world cities 
distribution and its rank clock are shown in Figure 12. 

 

 
 

Figure 12: Rank Clocks of UN Urban Areas 1950 to 2010 from the Rank Clock 
Visualiser Showing the Trajectory for Adelaide, Australia 

 
We have not so far explored the possibility that the morphology of the rank 
clock itself provides a shorthand for the kinds of dynamics that characterise the 
system of interest. We noted earlier that the individual trajectories might be 
classified but the shape of the clock also varies and we can see from those 
illustrated here how different they might be. For example, clocks with no 
change in range are perfect circular orbits, while those with regular changes in 
rank up or down or both reflect spirals. We can thus position any clock on this 
spectrum, getting an immediate picture of its dynamics. Some examples of this 
kind of classification can be seen in the clocks portrayed for growing cities like 
those in Israel which are dominated by inward spirals (Benguigui, Blumenfeld-
Lieberthal, and Batty, 2008). What we need is to tie the dynamics more 
consistently to this geometry. In fact a purely regular dynamics is not very 
useful as it is quite unrealistic in city systems whereas the boom-bust structure 
of economic dynamics is much more likely. Changes in social taste are also 
likely to be reflected in urban dynamics and our quest must be to begin to 
identify different dynamics that are associated with different geometries of 
clock so that a deeper, more structured picture of the way this world of cities 
works can be generated. 
 
To conclude, it is worth saying a little more about the notion of scaling in city 
systems. Our argument began by suggesting that city size distributions were 
scaling, following power laws in their heavy tails although always predicated on 
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the basis that their underlying distribution is more likely to be lognormal. Power 
laws are thus a good approximation to the heavy tails but no more than this. 
And they simply represent our starting point. The rank clock is a good device if 
we can assume that population is related to rank by a simple logarithmic 
transformation as is consistent with a power law but once we have the idea of 
the clock, the fact that it relates rank to population can be conveniently 
forgotten. The clock has its own integrity in that it displays a kind of dynamics 
that can be explored more generally and if a rank clock and a size clock are 
defined, one related to the other, then all kinds of novel animations and 
explorations suggest themselves. It is in this spirit that the Visualiser has been 
developed.  
 
We need much better statistics that pertain to the different kinds of dynamics 
and their variation over time and space. The idea of the half life needs to be put 
on a more consistent footing and defined more rigorously. But in the wider 
perspective, this chapter is as much about space-time dynamics as it is about 
power laws and scaling. We need to explore the extent to which the kinds of 
dynamics that define bifurcations, tipping and turning points, and even 
catastrophes relate to scaling. Little has been done to date but there are strong 
hints in the notion of fractals, self-similarity and hierarchy that need to be 
exploited in linking this kind of aggregate spatial analysis to the dynamics of 
spatial modelling. After 25 years or more of consistent but slow development in 
the field of spatial dynamics, there are now many fertile ideas that will see this 
field explode intellectually and in terms of applications during the next 25.  
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