

BENVGSA4: SPATIAL MODELLING & SIMULATION

Thursday, 21 March, 2013

Session 5: Lecture 7:

Agent-Based Urban Models

Hybrid Modelling of Crowds

Ateen Patel, CASA

http://www.casa.uc..ac.uk

Hybrid modelling of crowds

Ateen Patel, March 2013 Supervised by Mike Batty, Andy-Hudson Smith and Anthony Steed

A little bit of history

Boids model – Craig
Reynolds, 1987

Alignm ent

Computer simulation

Breakdown of behaviours

Appearances of the boids model in various guises

Stanley and Stella in: Breaking the ice (1987)

Batman Returns (1992)

The Lion King (1994)

Overview

- Motivation
- Applications
- Microscopic Model
- Macroscopic Model
- Hybrid Model
- Summary

Motivation and Aim

- Real world crowds are ubiquitous
- Current models require trade-offs:
 - Complex behavior vs computation time
- Real-time applications: crowds are still rare, interactive worlds are mostly ghost towns (urban planning and games)

Approaches and Applications

- Common approaches:
 - Particle systems
 - Agent based models
 - Cellular automata
 - Probability networks
 - Social-force networks

- Applications
 - Entertainment industry (animation production, computer games)
 - Architecture (planning of buildings, towns, visualization)
 - Safety science (evacuation of buildings)

Microscopic Model

- Simulating dynamic features of escape panic i.e., Social Forces
 - Characteristics:
 - People move or try to move considerably faster than normal
 - Individuals start pushing, and interactions become physical
 - Moving becomes uncoordinated
 - At exits, arching and clogging are observed
 - Jams build up
 - Pressure on walls and steel barriers increase
 - Escape is further slowed by fallen or injured people acting as 'obstacles'

Boids to People

Governing Equations

$$m_i \frac{\mathrm{d}\mathbf{v}_i}{\mathrm{d}t} = m_i \frac{v_i^0(t)\mathbf{e}_i^0(t) - \mathbf{v}_i(t)}{\tau_i} + \sum_{j(\neq i)} \mathbf{f}_{ij} + \sum_{W} \mathbf{f}_{iW}$$

Velocity change =

Mass x desired speed x direction – actual velocity

characteristic

Forces

time

Advantages and Limitations

- Capability of modelling individual behaviour
- Models the property of emergence, where complex life-like global behaviour arises from the interaction of simple rules.
- As computation time increases per-agent, this limits the speed and scalability of the model.

Macroscopic Model

- Continuum Crowds
 - Characteristics
 - Continuum based model not agent based
 - Think of it as a continuous cellular automata
 - Goal oriented
 - Always trying to reach a goal Goal oriented
 - Always trying to move at fastest speed
 - Always trying to move with least discomfort
 - Groups share similar preferences

Construct final potential field based on the cost field

$$(\bar{\mathbf{v}}(\mathbf{x}+r\mathbf{n}_{\theta})\cdot\mathbf{n}_{\theta} - f_{max} + \left(\frac{\nabla h(\mathbf{x})\cdot\mathbf{n}_{\theta} - s_{min}}{s_{max} - s_{min}}\right)(f_{min} - f_{max})) \cdot \frac{\nabla\phi(\mathbf{x})}{\left(\frac{\alpha f + \beta + \gamma g}{f}\right)}$$

Advantages and Limitations

- The computation time per agent decreases dramatically vs agent based models, as the fluid once computed acts on the group as a whole.
 Agents do not make individual decisions, but are directed by the fluid.
- Clearly, agents are far more individual in real crowds than this continuum model likes us to believe. What can we do about adding individualism to this model?

Hybrid Model

- Characteristics
 - Model divided into exclusive regions that are interdependent
 - The region of interest is modeled as the ABM
 - The remainder of the area is modeled as the faster continuum model
 - Creates flexibility and scalability for large-scale flows with complex dynamics

ABM

Transition: ABM -> Continuum

- •ABM agents travel towards transition region
- •Control is passed onto the Model

Agents enter Transition region

Agents enter continuum region

- •Model Controller determines ABM agents' goals.
- Assigns agents to respective continuum group based on desired goal
- •Agents in their respective groups travel to their respective goals.
- •If goal is beyond continuum, control is passed back onto the Model Controller

Agents move towards final goal

Model Controller

A couple screen shots

goal

Agents in black try to move from left to right

What the final scenario creation can lead to

