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Outline of Lecture 6

Scaling across Space: Gravitation

Accessibility: In-degrees, Out-degrees & Potentials
The Family of Spatial Interaction Models
Entropy-Maximising

Defining Entropy

We will examine Symmetry and Related Concepts in

the next lecture and complete our definitions of
entropy .....
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Scaling across Space: Gravitation

So far we have looked at scaling with respect to how an object
changes in size — allometry — and how a set of objects which
are all different sizes relate to one another — rank-size laws
but space has been strangely absent from our treatment. It
is time to redress this and this will involve us in what some

have called ‘The First Law of Geography’ from a paper by
Waldo Tobler (1970)

Tobler’s Law states that: “Everything is related to everything
else, but near things are more related than distant things”
This is often expressed as a power law or rather an inverse
power law where the strength of the relationship varies as

. 1 or 1 or something like this
distance (°
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Tobler's first law of geography

From Wikipedia, the free encyclopedia

The first law of geography according to Waldo Tobler is "Everything is related to everything else, but near things are more related than distant thinqs_"m

This cbservation is embedded in the gravity model of trip distribution. It is also related to the law of demand. in that interactions between places are inversely proportional to the cost of
travel between them, which is much like the probability of purchasing a good is inversely proportional to the cost.

It is also related to the ideas of Isaac Newton's Law of universal gravitation and is essentially synonymous with the concept of spatial dependence that forms the foundation of spatial
analysis.

The link structure of Wikipedia's collection of geolocated articles has been demonstrated to be consistent with Tobler's first law of geugraphy_lz]
References [edit]

1. A Tobler W, (1970) "A computer movie simulating urban growth in the Detroit region”. Economic Geography, 46(2); 234-240.

2. “Hecht, B, Moxley, E.: "Terahytes of Tobler: Evaluating the first law in a massive, domain-neutral representation of world knowledge” 8. In Hornsby, K.S., Claramunt, C., Denis, M., Ligozat,
., eds. Spatial Information Theory, 9th International Conference, COSIT 2009, Aber Wrac'h, France, September 21-25, 2008, Proceedings. Volume 5756 of Lecture Motes in Computer R
Science., Springer (2009) 85-105
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A basic model of forces between nodes in a graph was first
articulated by Newton as his second law of motion — force is
proportional to mass times acceleration. In more
conventional terms we might write the force between two
bodies as F;, ~M; M, / (d?),,

There is a very long history of analogies between force and
social interaction going back to Newton himself and | will
add some refs to the bibliography. In fact in the last lecture
we noted Ravenstein’s contribution in the 1880s but
apparently Carey used it for human systems before in 1850
and there is some sense in which the French speculated
about such models in the late 17t and 18" centuries.
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But let me immediately generalise this and say that we need to
define many interactions — we break our system into areas
or points which we define as origins and destinations i and |

And then we usually measure the distance not as distance per
se but as travel cost or rather generalised cost c;

We also define the mass at the origins and destinations as O,
and D; but first we define this as the populations B and P,
and we then write the conventional spatial interaction of

gravity model as

RP,_ PP,
Tij~ 2 =K 2

where K is the gravitational constant
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Now this is a flow model, not a network model, in terms of our
previous discussion. In fact when we examine the indegrees
and outdegrees, then this model lets us compute
accessibilities not counts.

The equivalent model for counts which we assume are
observed indegrees and outdegrees involve origin and
destination activities O; and Dj. We can now compare the

models — the population gravity model & the generic model

PP, 0D,
Ti=K—* and T;=K >
Cij Cij

These do look the same but note that the first is symmetric and

the second is not — this lets us make some key distinctions
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Accessibility: In-degrees, Out-degrees & Potentials

Now let us take the population gravity model and compute its
indegrees and outdegrees as follows:

V, =) T; =KP ) Pjc;’
j j
Vi=) Tj=KP;> Py

You can immediately see that the indegrees and outdegrees are
identical, that is (if the cost matrix is symmetric of course).

Vi =V, forall i =]

This is defined as the potential —in fact the population
potential by Stewart and Warntz (1958) in analogy to
potential force in physics —the integration of force at a point.

Centre for Advanced Spatial Analysis b




A useful extension although it makes no difference to the
symmetry of the model is to divide potential by population
and produce a per capita measure as

V.

Vi 2V forall i = j

PP

In fact, let us do the same for the origin-destination model

where the potentials are not symmetric; for completeness
we just state the equations

Vi=> Ty =KO; Y Djci® and V=Y T, = KD, Oic;?
j j !

. .V,

V. =V forall i=j and &7&—] forall i= |
] P V.
I J
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Of course, it is not only the indegrees and outdegrees — in the
case of a model —the accessibilities that are equal in the
population gravity model but also the flows themselves as
the underlying network is symmetric

That is

Tij =T; = KP,P,ci* = KP;Pcy/

As long as the cost or distance matrix is symmetric which we
can readily assume but only if the model is pitched at a level
of aggregation where this is acceptable; as we said in the last
lecture, if our models are of street systemes, this is rarely
ever true. It is usually only true of highly aggregate systems
where

Cij — CJI
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Ok we can define many kinds of potential or accessibility in this
manner and to illustrate this let me turn to our land use
transport model of London and show you how some of these
play out. Here we have a variety of accessibility indicators

= Help: Accessibilities Defined EIE|E|

Accessibility measures are computed with respect to the origin zone i
which in this cage 1z where the employment 5; 15 located, or the destination

zene f which in thiz case 1z where the population P,i' is located. A ig the

area and hence { B/ 4;) and (PJ-fAJ-) are densities. Ty iz the trawvel cost

from origin zone i to destination zone j. T is the mean travel cost with all

these cost specific to each of the four modes. We show all these accessibility
measures for the origin i zone.

Absclute Potential FPotential Density
-1 -1
v, = ZJ_ Pioy V= ZJ_ (551 405
Benefit Density
Absclute Benefit N Z ]?E;nefﬁ;]:))enm ( ; E)
Vi=2 B expl—c; I1C) 1 gy SRR Ry

These benefits are proportional to the log sum benefits which are the log of these

(Inverse) (Inwverse)
Absolute Trawvel Cost Weighted Absolute Travel Cost
-1 -1
‘T’?:(ZJ-C;}':‘ ‘T”:':(ZJ-%C;}')
{Inverse) Weighted Population
Absolute Travel Cost Denstty within Mean Travel Cost
= 23‘ (P} J’AJ-)CE}- V= ZJ. Pj Jar all oy = izt
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The simplest measure we compute is for origins and
destinations over the road system where origins are
employment and destinations are population, so they are

not symmetric at all

% Accessibility Indicators

Emp{Pop Show Access » Origin Access

Dest Access

ﬂ |Hoad j Abs Patential

|Emp+F‘op

j |Dest Accessibilig j

Click to Save the
Thematic Map to Dizplay
in Google E arth

& Accessibility Indicators

Emp/Pop Show Aocess v Origin Access Dest Access
|Emp+P0p ﬂ |F|oad ﬂ |Abs Potential

Click to Save the
Thematic kMap to Display
in Google Earth
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Now | need to explain why these two maps are so different.
First for employment accessibility — origins — there are large
guantities of employment in the CBD and also congestion
charging which makes the accessibility to employment
higher outside the CBD. Hence the light blue zone In the
centre has lower accessibility

For destination accessibility, there are only small volumes of
population in the CBD but large ones just outside and this
evens things out such that the effect of congestion charging
relative to population in general in Greater London is as high
in the CBD as outside it.

This is reflected in all our measures —in fact if | have time | will
demonstrate all these measures in class by running the
model. We will return to symmetry in the next lecture.
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The Family of Spatial Interaction Models

We have already generalised the gravity model to capture the
usual case where origins and destinations are not symmetric
and the model we will work with from now on is

0D,
K

J

This is the model that has been used for years but in the 1960s
and 1970s various researchers cast it in a wider framework —
deriving the model by setting up a series of constraints on its
form which showed how it might be solved and produced
various generating mechanisms that could generate
consistent models. We will first show how we produce
models from constraints then from the generating methods.
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The constraints logic led to consistent accounting

The generative logic lead to analogies between utility and
entropy maximising and opened a door that has not been
much exploited to date between entropy, energy, urban
forms physical morphology and economic structure

In particular the economic logic rather than the energy-entropy
logic was called choice theory, specifically discrete choice.

Let us redefine our terms. We will refer to the size of volume of
origins and destinations not as population P any more but as
O, and D, assuming they are different from one another. We
will also assume that the inverse square law on distance or
travel cost does not apply and that whenever c; appears it
will be parameterised with a value that varies which we call
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We will assume trips are as we have defined them as T, but we
will also normalise trips by their total volume T to produce
probabilities which we use in the generative mechanisms

Tij Tij Note that we use
P = T = ZT ~ | summation extensively
: Y in what follows

We must move quite quickly now so let me introduce the basic
constraints on spatial interaction and then state various
models. The constraints are usually specified as origin
constraints and destination constraints as

0, =T, D;=2T
J |

And we can take our basic gravity model and make it subject to
either or both of these constraints or not at all
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So what we get are four possible models which are key
members of the family of such models

Unconstrained T; = KoiDjCUTﬂ subjectto ) Ty =T
i

Singly (Origin) Constrained so that the volume of trips at the
origins is conserved T; = AOiDjCi}lSUbjeCt to ZTU' =0
]

Singly (Destination) Constrained so that the volume of trips at
the destinations is conserved T; =B;0,D;c; subj to ZT =D;

Doubly Constrained trip volumes at origins + destinations are
conserved T, =AB,O,D,c;”* st ZT ~0.and 2.Tj =D;
i
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The first three are location models, the last a traffic model. Ok,
so what are these parameters that enable the constraints to
be met — well they can be easily produced by summing each
model over the relevant subscripts —origins or destinations
and then simply substituting and rearranging. | will do this
but | will leave you to work through the algebra in your own
time and many of you will know this anyway. Here are the

factors which are sometimes called balancing factors

Unconstrained K= T/ szloi D;c;”

Origin Constrained A= y 2.Dcy’

Destination Constrained B; =]/ i O¢;”

Doubly Constrained A = ]/2 BD;c;" B = J/Z AOCc,*
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Entropy-Maximising

Now we have only dealt with constraints through consistent
accounting — we now need to deal with generative methods
that lead to the same sort of accounting— entropy
maximising, information-minimising, utility-maximising and
random utility-maximising, and also various forms of
nonlinear optimisation —in fact all these methods may be
seen as a kind of optimisation of an objective function —
entropy utility and so on — subject to constraints

We will define entropy maximising. First we define entropy as
Shannon information and we convert all our equations and
constraints to probabilities. Shannon entropy is

H = _ZZ pij Iog pij
]
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We maximise this entropy subject to the previous constraints —
dependent on what kind of model we seek but noting now
that we need another constraint on travel cost which is
equivalent to energy so that we can derive a model

We thus set up the problem as

max H=-> > p;log p;
subject to -

Zj] Py = P

Z p; = P,

ZZ}: p,C; =C

But note that the probabilities always add to 1, that is

Zzpij :Zpi :ij =1
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| am not going to work this through by setting up a Lagrangian
and differentiating it and then getting the result. There is a
lot of basic algebra involved and all | want to show is the
result. You can find this in any standard text on spatial
interaction

For this optimisation the model that we get can be written as

P = exp(_ﬂ‘i _ﬂ‘j _Ci}ﬁ)
or
T; =Tp; = A0,B,D, exp(—ﬂ,cij)

Let us note many things

1. This is the doubly constrained model but with an
exponential of travel cost replacing the inverse power

2. We can get any of the other constrained models in the
family by dropping constraints and we can do this directly
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3. We can begin to explore what entropy means by substituting
the probability model into the entropy equation — paper to
read on this relevant to this lecture is my GA 2010 (below).

4. We can think of this method as one in which the most likely
model is generated given the information which is in the
constraints

5. In terms of statistical physics, this model is essentially the
Boltzmann-Gibbs distribution

6. Entropy can be seen as utility under certain circumstances

7. We solve the model —i.e. find its parameters by solving the
entropy program which is equivalent to solving the
maximum likelihood equations

8. We can then use this scheme to develop many different
kinds of model — where we add more and more constraints
and also disaggregate the equations to deal with groups
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Residential Location, Modal Split

Let me illustrate in two ways how we can build models using
this framework

First if we say that residential location depends on not only
travel cost but also on money available for housing we can
argue that

1. The model is singly constrained — we know where people
work and we want to find out where they live — so origins
are workplaces and destinations are housing areas

2. The model then lets us predict people in housing

3. We argue that people will trade off money for housing
against transport cost

And we then set up the model as follows
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It is

ZTU’ =0,
j

ZZTUC” =C
]

2. 2. TyR; =R
i j

leads to
T;; = AO; exp(IR;) exp(-Ac;)

Note that R; is the average house price in jand R total
housing costs in the system. We can find out from this
location model how many people live in destination housing
zones, so it is a distribution as well as a location model




If we want a modal split model, we can break the trips into
different modes and then let the modes compete with
locations for travellers

In this way we produce a combined modal split location model.

Sometimes we may want the modes to be constrained and in
generating specific constraints on total travellers by mode,
this is equivalent to adding parameters that distort the
travel costs — in fact the generic equation can be seen as
one where the travel cost or energy is modified by the
volume constraints

P = exp(_/li _/Ij _Ci}/i)

That is or

T; =Tp; = AO,B;D; exp(-Ac;)
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Defining Entropy

At one level, you don’t need to know what it is. You just need
to be familiar that there is a technique of maximising a
guantity subject to known information — constraints

You could think of this quantity as Accessibility or as Utility —in
fact many people do.

Maximising utility is easy enough to understand

Now there are some very useful insights if we think of entropy
as information. So we maximise information rather than
entropy but there are some really interesting issues about
entropy and thermodynamics that we don’t have time to go
into here. To give a taste of these, we need to look at the
properties.
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So this is a bit of digression to begin with but let us not forget
that this mysterious quantity called entropy is not widely
understood even by physicists, perhaps especially by
physicists.

Von Neumann to Shannon in 1948 says it all:

“You should call it entropy, for two reasons. In the first place
your uncertainty function has been used in statistical
mechanics under that name, so it already has a name. In the
second place, and more important, no one really knows what
entropy really is, so in a debate you will always have the
advantage!”

Ok. Let me first state the formula for entropy as information
which Shannon derived. It is the same as we have been using
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H=-> p;log p,
i=1

How do we get this? Now we can get it many ways but the
easiest in my view is this. We define information from the
probability of an event occurring p.. If the probability is low
and the event occurs, the information gain is high

and vice versa, so we define raw info as
1

P
But if an event occurs and another event occurs which is
independent, then the raw info is
1

Pi pj
Now information gained should be additive, we should be able
to add the first info and the second info to get this but
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1 1 1
#=—+

Pib; B P

The only function to do this is the log of

1
log—

P
And we thus write the information as follows

1 1 1
) =F()+FEH)
P1 P2 P P, .

—log(p,p,) =—log(p,)—log(p,)

F(

And if we take the average or expected value of all these
probabilities in the set, we multiply the info by the
probability of each and sum
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To get

H = _Z Pi log Pi
i=1

Now entropy or information is large — big — when all the
probabilities are the same — uniform

And it is small —in fact 0 — when one probability is 1 and the
rest are zero

p, =1 andtherestare p, =0,V] =1
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We can draw a graph of all these probabilities as follows — first

when there are all equal

p = 1/n and Entropy H = max

And then when only one is equal to 1

e n | p=1,therest0, Entropy H = min

In the first case there is extreme homogeneity and in the second

extreme order. These profiles are like population density slices.
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Essentially in E-M, we choose a probability distribution so that we
let there be as much uncertainty as possible subject to what
information we know which is certain

This is not the easiest point to grasp — why would we want to
maximise this kind of uncertainty — well because if we didn’t
we would be assuming more than we knew — if we know there
is some more info then we put it in as constraints. If we know

p=1, we say so in the constraints. Let us review the process,
| will repeat it all in standard statistical mechanics terms:

Maximise H =->_p;logp,
i=1

Subjectto 2 Pi=1 and 2 P& =C
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We can think of this as a one dimensional probablity density
model where this might be population density
And we then get the classic negative exponential density function

which can be written as

_exp(-Ac;) B
P = >exp(-4c) Z P =

Now we don’t know this is a negative function, it might be

positive — it depends on how we set up the problem but in
working out probabilities wrt to costs, it implies the higher the
cost, the lower the probability of location.

We can now show how we get a power law simply by using a log

constraint on travel cost instead of the linear constraint.
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We thus maximise entropy subject to a normalisation constraint
on probabilities and now a logarithmic cost constraint of the

form

Max H = _Z p; log p,
i—1

Subject to Zpizl Zpi-:C

Note the meaning of the log cost constraint. This is viewed as the
fact that travellers perceive costs logarithmically according the

Weber Fechner law and in some circumstances this is as it
should be.
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If we do all this we get the following model where we could

simply put logc, into the negative exponential getting

A

_exp(=4Alogc;) G
* > exp(-1logc;) = M >t

A power law. But this is not the rank size relation as in the sort of
scaling we looked at last week. Let us see if we can get such a
relation. But this will be next week. Before we go, let us give

one reference to my GA 2010 paper

Space, Scale, and Scaling in Entropy Maximizing, Geographical
Analysis 42 (2010) 395—-421 which is at
http://www.complexcity.info/files/2011/06/batty-ga-2010.pdf
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The blog will have more and more
references as the course continues

Questions

www.complexity.info

www.spatialcomplexity.info
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